summaryrefslogtreecommitdiff
path: root/library/relation/uniqueness.tex
blob: 68b01de401b877ea763a15b6a6776a9dfaddb207 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
\import{set.tex}
\import{relation.tex}


\subsection{Injective relations}

% Injective relations are also called "left-unique"
\begin{definition}\label{injective}
    $R$ is injective iff for all $a,a',b$ such that $a, a'\mathrel{R} b$ we have $a = a'$.
\end{definition}

\begin{abbreviation}\label{leftunique}
    $R$ is left-unique iff $R$ is injective.
\end{abbreviation}

\begin{proposition}\label{subseteq_of_injective_is_injective}
    Suppose $S\subseteq R$.
    Suppose $R$ is injective.
    Then $S$ is injective.
\end{proposition}

\begin{proposition}\label{restrl_injective}
    Suppose $R$ is injective.
    Then $\restrl{R}{A}$ is injective.
\end{proposition}
\begin{proof}
    $\restrl{R}{A}\subseteq R$.
\end{proof}

\begin{proposition}\label{circ_injective}
    Suppose $R$ and $S$ are injective.
    Then $S\circ R$ is injective.
\end{proposition}

\begin{proposition}\label{identity_injective}
    Then $\identity{A}$ is injective.
\end{proposition}

\subsection{Right-unique relations}

% also called "functional" or "univalent"
\begin{definition}\label{rightunique}
    $R$ is right-unique iff
    for all $a,b,b'$ such that $a\mathrel{R} b, b'$ we have $b = b'$.
\end{definition}

\begin{abbreviation}\label{onetoone}
    $R$ is one-to-one iff $R$ is right-unique and injective.
\end{abbreviation}

\begin{proposition}\label{subseteq_of_rightunique_is_rightunique}
    Suppose $S\subseteq R$.
    Suppose $R$ is right-unique.
    Then $S$ is right-unique.
\end{proposition}

\begin{proposition}\label{circ_rightunique}
    Suppose $R$ and $S$ are right-unique.
    Then $S\circ R$ is right-unique.
\end{proposition}



\subsection{Left-total relations}

\begin{definition}\label{lefttotal}
    $R$ is left-total on $A$ iff
    for all $a\in A$ there exists $b$ such that $a\mathrel{R} b$.
\end{definition}


\subsection{Right-total relations}

\begin{definition}\label{righttotal}
    $R$ is right-total on $B$ iff
    for all $b\in B$ there exists $a$ such that $a\mathrel{R} b$.
\end{definition}

\begin{abbreviation}\label{surjective}
    $R$ is surjective on $B$ iff $R$ is right-total on $B$.
\end{abbreviation}