1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
% The theory of splitting sets into two (inhabited, disjoint) partitions.
% See also "bisections" here: https://isarmathlib.org/Partitions_ZF.html
\import{set.tex}
\import{set/cons.tex}
\import{set/powerset.tex}
\subsection{Bipartitions}
\begin{abbreviation}\label{bipartitions}
$C$ is partitioned by $A$ and $B$ iff $A,B\neq\emptyset$ and $A$ is disjoint from $B$ and $A\union B = C$.
\end{abbreviation}
\begin{definition}\label{bipartitions_of_a_set}
$\bipartitions{X} = \{ p\in\pow{X}\times\pow{X}\mid \text{$X$ is partitioned by $\fst{p}$ and $\snd{p}$}\}$.
\end{definition}
\begin{abbreviation}\label{is_a_bipartition_of}
$P$ is a bipartition of $X$ iff $P\in\bipartitions{X}$.
\end{abbreviation}
\begin{proposition}\label{bipartition_intro}
Suppose $C$ is partitioned by $A$ and $B$.
Then $(A, B)$ is a bipartition of $C$.
\end{proposition}
\begin{proof}
$(A,B)\in\pow{C}\times\pow{C}$.
$C$ is partitioned by $\fst{(A,B)}$ and $\snd{(A,B)}$.
Thus $(A, B)$ is a bipartition of $C$ by \cref{bipartitions_of_a_set}.
\end{proof}
\begin{proposition}\label{bipartition_elim}
Suppose $(A, B)$ is a bipartition of $C$.
Then $C$ is partitioned by $A$ and $B$.
\end{proposition}
\begin{proof}
$\fst{(A, B)} = A$.
$\snd{(A, B)} = B$.
\end{proof}
\begin{proposition}\label{bipartitions_emptyset}
$\bipartitions{\emptyset}$ is empty.
\end{proposition}
\begin{proposition}\label{union_eq_cons_implies_union_remove_eq}
Suppose $d\notin C$.
Suppose $A\union B = \cons{d}{C}$.
Suppose $A, B\neq \{d\}$.
Then $\remove{d}{A}\union \remove{d}{B} = C$.
\end{proposition}
\begin{proof}
Follows by set extensionality.
\end{proof}
\begin{proposition}\label{bipartitions_cons}
Suppose $d\notin C$.
Suppose $\cons{d}{C}$ is partitioned by $A$ and $B$.
Suppose $A, B\neq \{d\}$.
Then $C$ is partitioned by $\remove{d}{A}$ and $\remove{d}{B}$.
\end{proposition}
\begin{proof}
$\remove{d}{A},\remove{d}{B}\neq\emptyset$.
$\remove{d}{A}\union \remove{d}{B} = C$ by \cref{union_eq_cons_implies_union_remove_eq}.
\end{proof}
% TODO
%\begin{proposition}\label{singleton_bipartition}
% Suppose $b\notin A$.
% Suppose $A$ and $\{b\}$ bipartition $\cons{b}{C}$.
% Then $A = C$.
%\end{proposition}
|