1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
\import{set.tex}
\import{set/powerset.tex}
\section{Filters}
\subsection{Definition and basic properties of filters}
\begin{abbreviation}\label{upwardclosed}
$F$ is upward-closed in $S$ iff
for all $A, B$ such that $A\subseteq B\subseteq S$ and $A\in F$ we have $B\in F$.
\end{abbreviation}
\begin{definition}\label{filter}
$F$ is a filter on $S$ iff
$F$ is a family of subsets of $S$
and $S\in F$
and $\emptyset\notin F$
and $F$ is closed under binary intersections
and $F$ is upward-closed in $S$.
\end{definition}
\begin{proposition}\label{filter_ext_complement}
Let $F, G$ be filters on $S$.
Suppose for all $A\subseteq S$ we have $S\setminus A\in F$ iff $S\setminus A\in G$.
Then $F = G$.
\end{proposition}
\begin{proof}
Follows by set extensionality.
\end{proof}
\begin{proposition}\label{filter_inter_in_iff}
Let $F$ be a filter on $S$.
Suppose $A, B\subseteq S$.
Then $A\inter B\in F$ iff $A, B\in F$.
\end{proposition}
\begin{proof}
We have $A\inter B\subseteq A, B$.
Follows by \cref{filter}.
\end{proof}
\begin{proposition}\label{filter_setminus_in}
Let $F$ be a filter on $S$.
Suppose $A\in F$.
Suppose $B\subseteq S$ and $S\setminus B\in F$.
Then $A\setminus B\in F$.
\end{proposition}
\begin{proof}
We have $A\subseteq S$.
Thus $A\setminus B = A\inter (S\setminus B)$ by \cref{setminus_eq_inter_complement}.
Now $S\setminus B\subseteq S$.
Follows by \cref{filter_inter_in_iff}.
\end{proof}
\begin{proposition}\label{filter_in_iff_exists_subset}
Let $F$ be a filter on $S$.
Suppose $B\subseteq S$.
Then $B\in F$ iff there exists $A\subseteq B$ such that $A\in F$.
\end{proposition}
\subsection{Principal filters over a set}
\begin{definition}\label{principalfilter}
$\principalfilter{S}{A} = \{X\in\pow{S}\mid A\subseteq X\}$.
\end{definition}
\begin{proposition}\label{principalfilter_iff}
Suppose $A, B\subseteq S$.
Then $B\in\principalfilter{S}{A}$ iff $A\subseteq B$.
\end{proposition}
\begin{proposition}\label{principalfilter_bottom}
Suppose $A\subseteq S$.
Then $A\in\principalfilter{S}{A}$.
\end{proposition}
\begin{proposition}\label{principalfilter_top}
Suppose $A\subseteq S$.
Then $S\in\principalfilter{S}{A}$.
\end{proposition}
\begin{proposition}\label{principalfilter_is_filter}
Suppose $A\subseteq S$.
Suppose $A$ is inhabited.
Then $\principalfilter{S}{A}$ is a filter on $S$.
\end{proposition}
\begin{proof}
$S$ is inhabited. % since $A$ is inhabited and $A\subseteq S$.
$\principalfilter{S}{A}$ is a family of subsets of $S$.
$S\in \principalfilter{S}{A}$.
$\emptyset\notin \principalfilter{S}{A}$.
$\principalfilter{S}{A}$ is closed under binary intersections.
$\principalfilter{S}{A}$ is upward-closed in $S$.
Follows by \cref{filter}.
\end{proof}
\begin{proposition}\label{principalfilter_elem_generator}
Suppose $A\subseteq S$.
$A\in\principalfilter{S}{A}$.
\end{proposition}
\begin{proof}
$A\in\pow{S}$.
\end{proof}
\begin{proposition}\label{principalfilter_notelem_implies_notsupseteq}
Let $X\in\pow{S}$.
Suppose $X\notin\principalfilter{S}{A}$.
Then $A\not\subseteq X$.
\end{proposition}
\begin{definition}\label{maximalfilter}
$F$ is a maximal filter on $S$ iff
$F$ is a filter on $S$ and there exists no filter $F'$ on $S$ such that $F\subset F'$.
\end{definition}
\begin{proposition}\label{principalfilter_singleton_is_filter}
Suppose $a\in S$.
Then $\principalfilter{S}{\{a\}}$ is a filter on $S$.
\end{proposition}
\begin{proof}
$\{a\}\subseteq S$.
$\{a\}$ is inhabited.
Follows by \cref{principalfilter_is_filter}.
\end{proof}
\begin{proposition}\label{principalfilter_singleton_is_maximal_filter}
Suppose $a\in S$.
Then $\principalfilter{S}{\{a\}}$ is a maximal filter on $S$.
\end{proposition}
\begin{proof}
$\{a\}\subseteq S$.
$\{a\}$ is inhabited.
Thus $\principalfilter{S}{\{a\}}$ is a filter on $S$ by \cref{principalfilter_is_filter}.
It suffices to show that there exists no filter $F'$ on $S$ such that $\principalfilter{S}{\{a\}}\subset F'$.
Suppose not.
Take a filter $F'$ on $S$ such that $\principalfilter{S}{\{a\}}\subset F'$.
Take $X\in F'$ such that $X\notin \principalfilter{S}{\{a\}}$.
$X\in\pow{S}$.
Thus $\{a\}\not\subseteq X$ by \cref{principalfilter_notelem_implies_notsupseteq}.
Thus $a\notin X$.
$\{a\}\in F'$
% TODO clean
by \cref{principalfilter,elem_subseteq,union_intro_left,subset,union_absorb_subseteq_left,subseteq_refl,powerset_intro}.
Thus $\emptyset = X\inter \{a\}$.
Hence $\emptyset\in F'$ by \cref{filter}.
Follows by \hyperref[filter]{contradiction to the definition of a filter}.
\end{proof}
|