summaryrefslogtreecommitdiff
path: root/library/set/partition.tex
blob: ed74bf7ba5500db224aa6d2f8a307aae9b0dee1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
\import{set.tex}

\subsection{Partitions}

\begin{definition}\label{partition}
    $P$ is a partition iff
    $\emptyset\notin P$ and
    for all $B, C\in P$ such that $B\neq C$ we have $B$ is disjoint from $C$.
\end{definition}

\begin{abbreviation}\label{partition_of}
    $P$ is a partition of $A$ iff
    $P$ is a partition and
    $\unions{P} = A$.
\end{abbreviation}

\begin{proposition}\label{partition_emptyset}
    $\emptyset$ is a partition of $\emptyset$.
\end{proposition}

\begin{definition}\label{partition_refinement}
    $P'$ is a refinement of $P$ iff
    for every $A'\in P'$ there exists
    $A\in P$ such that $A'\subseteq A$.
\end{definition}

\begin{abbreviation}\label{partition_refines}
    $P'\refines P$ iff
    $P'$ is a refinement of $P$.
\end{abbreviation}

\begin{proposition}\label{partition_refinement_transitive}
    Suppose $P''\refines P'\refines P$.
    Then $P''\refines P$.
\end{proposition}
\begin{proof}
    It suffices to show that for all $A''\in P''$ there exists $A\in P$ such that $A''\subseteq A$.
    Fix $A''\in P''$.
    Take $A'\in P'$ such that $A''\subseteq A'$
        by \cref{partition_refinement}.
    Take $A\in P$ such that $A'\subseteq A$.
    Then $A''\subseteq A$.
    Follows by definition. %i.e. A will do for the current existential goal.
\end{proof}

%\begin{definition}\label{set_of_representatives}
%    $X$ is a set of representatives for $P$ iff
%    for all $A\in P$ there exists $a\in A$ such that
%    $X\inter A = \{a\}$.
%\end{definition}