1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
\import{topology/topological-space.tex}
\subsection{Topological basis}
\begin{abbreviation}\label{covers}
$C$ covers $X$ iff
for all $x\in X$ there exists $U\in C$ such that $x\in U$.
\end{abbreviation}
\begin{proposition}\label{covers_unions_intro}
Suppose $C$ covers $X$.
Then $X\subseteq\unions{C}$.
\end{proposition}
\begin{proposition}\label{covers_unions_elim}
Suppose $X\subseteq\unions{C}$.
Then $C$ covers $X$.
\end{proposition}
% Also called "prebase", "subbasis", or "subbase". We prefer "pre-" or "quasi-"
% for consistency when handling generalizations, even if "subbasis" is more common.
\begin{abbreviation}\label{topological_prebasis}
$B$ is a topological prebasis for $X$ iff $\unions{B} = X$.
\end{abbreviation}
\begin{proposition}\label{topological_prebasis_iff_covering_family}
$B$ is a topological prebasis for $X$ iff
$B$ is a family of subsets of $X$ and $B$ covers $X$.
\end{proposition}
\begin{proof}
If $B$ is a family of subsets of $X$ and $B$ covers $X$,
then $\unions{B} = X$
by \cref{subseteq_antisymmetric,unions_family,covers_unions_intro}.
If $\unions{B} = X$,
then $B$ is a family of subsets of $X$ and $B$ covers $X$
by \cref{covers_unions_intro,subseteq_refl,covers_unions_elim}.
\end{proof}
% Also called "base of topology".
\begin{definition}\label{topological_basis}
$B$ is a topological basis for $X$ iff
$B$ is a topological prebasis for $X$ and
for all $U, V, x$ such that $U, V\in B$ and $x\in U,V$
there exists $W\in B$ such that $x\in W\subseteq U, V$.
\end{definition}
\begin{definition}\label{genOpens}
$\genOpens{B}{X} = \left\{ U\in\pow{X} \middle| \textbox{for all $x\in U$ there exists $V\in B$
\\ such that $x\in V\subseteq U$}\right\}$.
\end{definition}
|