1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
\import{topology/topological-space.tex}
\import{set.tex}
\import{set/powerset.tex}
\subsection{Topological basis}\label{form_sec_topobasis}
\begin{abbreviation}\label{covers}
$C$ covers $X$ iff
for all $x\in X$ there exists $U\in C$ such that $x\in U$.
\end{abbreviation}
\begin{proposition}\label{covers_unions_intro}
Suppose $C$ covers $X$.
Then $X\subseteq\unions{C}$.
\end{proposition}
\begin{proposition}\label{covers_unions_elim}
Suppose $X\subseteq\unions{C}$.
Then $C$ covers $X$.
\end{proposition}
% Also called "prebase", "subbasis", or "subbase". We prefer "pre-" or "quasi-"
% for consistency when handling generalizations, even if "subbasis" is more common.
\begin{abbreviation}\label{topological_prebasis}
$B$ is a topological prebasis for $X$ iff $\unions{B} = X$.
\end{abbreviation}
\begin{proposition}\label{topological_prebasis_iff_covering_family}
$B$ is a topological prebasis for $X$ iff
$B$ is a family of subsets of $X$ and $B$ covers $X$.
\end{proposition}
\begin{proof}
If $B$ is a family of subsets of $X$ and $B$ covers $X$,
then $\unions{B} = X$
by \cref{subseteq_antisymmetric,unions_family,covers_unions_intro}.
If $\unions{B} = X$,
then $B$ is a family of subsets of $X$ and $B$ covers $X$
by \cref{covers_unions_intro,subseteq_refl,covers_unions_elim}.
\end{proof}
% Also called "base of topology".
\begin{definition}\label{topological_basis}
$B$ is a topological basis for $X$ iff
$B$ is a topological prebasis for $X$ and
for all $U, V, x$ such that $U, V\in B$ and $x\in U,V$
there exists $W\in B$ such that $x\in W\subseteq U, V$.
\end{definition}
\begin{definition}\label{genopens}
$\genOpens{B}{X} = \left\{ U\in\pow{X} \middle| \textbox{for all $x\in U$ there exists $V\in B$
\\ such that $x\in V\subseteq U$}\right\}$.
\end{definition}
\begin{lemma}\label{emptyset_in_genopens}
Assume $B$ is a topological basis for $X$.
$\emptyset \in \genOpens{B}{X}$.
\end{lemma}
\begin{lemma}\label{union_in_genopens}
Assume $B$ is a topological basis for $X$.
Assume $F\subseteq \genOpens{B}{X}$.
Then $\unions{F}\in\genOpens{B}{X}$.
\end{lemma}
\begin{proof}
We have $\unions{F} \in \pow{X}$ by \cref{genopens,subseteq,pow_iff,unions_family,powerset_elim}.
Show for all $x\in \unions{F}$ there exists $W \in B$
such that $x\in W$ and $W \subseteq \unions{F}$.
\begin{subproof}
Fix $x \in \unions{F}$.
There exists $V \in F$ such that $x \in V$ by \cref{unions_iff}.
$V \in \genOpens{B}{X}$.
There exists $W \in B$ such that $x \in W \subseteq V$.
Then $W \subseteq \unions{F}$.
\end{subproof}
Then $\unions{F}\in\genOpens{B}{X}$ by \cref{genopens}.
\end{proof}
\begin{lemma}\label{basis_is_in_genopens}
Assume $B$ is a topological basis for $X$.
$B \subseteq \genOpens{B}{X}$.
\end{lemma}
\begin{proof}
We show for all $V \in B$ $V \in \genOpens{B}{X}$.
\begin{subproof}
Fix $V \in B$.
For all $x \in V$ $x \in V \subseteq V$.
$V \subseteq X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
$V \in \pow{X}$.
$V \in \genOpens{B}{X}$.
\end{subproof}
\end{proof}
\begin{lemma}\label{all_is_in_genopens}
Assume $B$ is a topological basis for $X$.
$X \in \genOpens{B}{X}$.
\end{lemma}
\begin{proof}
$B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
$\unions{B} \in \genOpens{B}{X}$.
$X \subseteq \unions{B}$.
\end{proof}
\begin{lemma}\label{inters_in_genopens}
Assume $B$ is a topological basis for $X$.
Assume $A, C\in \genOpens{B}{X}$.
Then $(A\inter C) \in \genOpens{B}{X}$.
\end{lemma}
\begin{proof}
We have $(A \inter C) \in \pow{X}$ by \cref{genopens,inter_powerset}.
Show for all $x\in (A\inter C)$ there exists $W \in B$
such that $x\in W$ and $W \subseteq (A\inter C)$.
\begin{subproof}
Fix $x \in (A\inter C)$.
Then $x\in A,C$.
There exists $V' \in B$ such that $x \in V' \subseteq A$ by \cref{genopens}.
There exists $V'' \in B$ such that $x \in V''\subseteq C$ by \cref{genopens}.
There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$ by \cref{topological_basis}.
Show $W \subseteq (A\inter C)$.
\begin{subproof}
For all $y \in W$ we have $y \in V'$ and $y \in V''$.
\end{subproof}
\end{subproof}
$(A\inter C) \in \genOpens{B}{X}$ by \cref{genopens}.
\end{proof}
|