blob: 239965c0ae4c87b9108fbf801ff0a5de37083d80 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
\import{set.tex}
\import{set/cons.tex}
\import{set/powerset.tex}
\import{set/fixpoint.tex}
\import{set/product.tex}
\import{topology/topological-space.tex}
\import{topology/separation.tex}
\import{topology/continuous.tex}
\import{topology/basis.tex}
\import{numbers.tex}
\import{function.tex}
\section{The canonical topology on $\mathbbR$}
\begin{definition}\label{topological_basis_reals_eps_ball}
$\topoBasisReals = \{ \epsBall{x}{\epsilon} \mid x \in \reals, \epsilon \in \realsplus\}$.
\end{definition}
\begin{theorem}\label{reals_as_topo_space}
Suppose $\opens[\reals] = \genOpens{\topoBasisReals}{\reals}$.
Then $\reals$ is a topological space.
\end{theorem}
\begin{proof}
Omitted.
\end{proof}
|