1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
\import{topology/topological-space.tex}
\import{set.tex}
\subsection{Separation}\label{form_sec_separation}
% T0 separation
\begin{definition}\label{is_kolmogorov}
$X$ is Kolmogorov iff
for all $x,y\in\carrier[X]$ such that $x\neq y$
there exist $U\in\opens[X]$ such that
$x\in U\not\ni y$ or $x\notin U\ni y$.
\end{definition}
\begin{abbreviation}\label{kolmogorov_space}
$X$ is a Kolmogorov space iff $X$ is a topological space and
$X$ is Kolmogorov.
\end{abbreviation}
\begin{abbreviation}\label{teezero}
$X$ is \teezero\ iff $X$ is Kolmogorov.
\end{abbreviation}
\begin{abbreviation}\label{teezero_space}
$X$ is a \teezero-space iff $X$ is a Kolmogorov space.
\end{abbreviation}
\begin{proposition}\label{kolmogorov_implies_kolmogorov_for_closeds}
Suppose $X$ is a Kolmogorov space.
Let $x,y\in\carrier[X]$.
Suppose $x\neq y$.
Then there exist $A\in\closeds{X}$ such that
$x\in A\not\ni y$ or $x\notin A\ni y$.
\end{proposition}
\begin{proof}
Take $U\in\opens[X]$ such that $x\in U\not\ni y$ or $x\notin U\ni y$
by \cref{is_kolmogorov}.
Then $\carrier[X]\setminus U\in\closeds{X}$ by \cref{complement_of_open_elem_closeds}.
Now $x\in (\carrier[X]\setminus U)\not\ni y$ or $x\notin (\carrier[X]\setminus U)\ni y$
by \cref{setminus}.
\end{proof}
\begin{proposition}\label{kolmogorov_for_closeds_implies_kolmogorov}
Suppose for all $x,y\in\carrier[X]$ such that $x\neq y$
there exist $U\in\closeds{X}$ such that
$x\in U\not\ni y$ or $x\notin U\ni y$.
Then $X$ is Kolmogorov.
\end{proposition}
\begin{proof}
Follows by \cref{closeds,is_closed_in,is_kolmogorov,setminus}.
\end{proof}
\begin{proposition}\label{kolmogorov_iff_kolmogorov_for_closeds}
Let $X$ be a topological space.
$X$ is Kolmogorov iff
for all $x,y\in\carrier[X]$ such that $x\neq y$
there exist $U\in\closeds{X}$ such that
$x\in U\not\ni y$ or $x\notin U\ni y$.
\end{proposition}
\begin{proof}
Follows by \cref{kolmogorov_implies_kolmogorov_for_closeds,kolmogorov_for_closeds_implies_kolmogorov}.
\end{proof}
% T1 separation (Fréchet topology)
\begin{definition}\label{teeone}
$X$ is \teeone\ iff
for all $x,y\in\carrier[X]$ such that $x\neq y$
there exist $U, V\in\opens[X]$ such that
$U\ni x\notin V$ and $V\ni y\notin U$.
\end{definition}
\begin{abbreviation}\label{teeone_space}
$X$ is a \teeone-space iff $X$ is a topological space and
$X$ is \teeone.
\end{abbreviation}
\begin{proposition}\label{teeone_implies_singletons_closed}
Let $X$ be a \teeone-space.
Assume $x \in \carrier[X]$.
Then $\{x\}$ is closed in $X$.
\end{proposition}
\begin{proof}
Omitted.
%Let $V = \{ U \in \opens[X] \mid x \notin U\}$.
%For all $y \in \carrier[X]$ such that $x \neq y$ there exist $U \in \opens[X]$ such that $x \notin U \ni y$ by \cref{carrier_open,teeone}.
%For all $y \in \carrier[X]$ such that $y \neq x$ there exists $U \in V$ such that $y \in U$.
%
%$\unions{V} \in \opens[X]$.
%For all $y \in \carrier[X]$ such that $x \neq y$ we have $y \in \unions{V}$.
%We show that $\carrier[X] \setminus \{x\} = \unions{V}$.
%\begin{subproof}
% We show that for all $y \in \carrier[X] \setminus \{x\}$ we have $y \in \unions{V}$.
% \begin{subproof}
% Fix $y \in \carrier[X] \setminus \{x\}$.
% $y \neq x$.
% $y \in \carrier[X]$.
% $y \in \unions{V}$.
% \end{subproof}
% For all $y \in \unions{V}$ we have $y \notin \{x\}$.
% For all $y \in \unions{V}$ we have $y \in \carrier[X] \setminus \{x\}$.
% Follows by set extensionality.
%\end{subproof}
\end{proof}
%
% Conversely, if \{x\} is open, then for any y distinct from x we can use
% X\setminus\{x\} as the open neighbourhood of y.
% T2 separation
\begin{definition}\label{is_hausdorff}
$X$ is Hausdorff iff
for all $x,y\in\carrier[X]$ such that $x\neq y$
there exist $U, V\in\opens[X]$ such that
$x\in U$ and $y\in V$ and $U$ is disjoint from $V$.
\end{definition}
\begin{abbreviation}\label{hausdorff_space}
$X$ is a Hausdorff space iff $X$ is a topological space and
$X$ is Hausdorff.
\end{abbreviation}
\begin{abbreviation}\label{teetwo}
$X$ is \teetwo\ iff $X$ is Hausdorff.
\end{abbreviation}
\begin{abbreviation}\label{teetwo_space}
$X$ is a \teetwo-space iff $X$ is a Hausdorff space.
\end{abbreviation}
\begin{proposition}\label{teeone_space_is_teezero_space}
Let $X$ be a \teeone-space.
Then $X$ is a \teezero-space.
\end{proposition}
\begin{proof}
Follows by \cref{is_kolmogorov,teeone}.
\end{proof}
\begin{proposition}\label{teetwo_space_is_teeone_space}
Let $X$ be a \teetwo-space.
Then $X$ is a \teeone-space.
\end{proposition}
\begin{proof}
We show that for all $x,y\in\carrier[X]$ such that $x\neq y$
there exist $U, V\in\opens[X]$ such that
$U\ni x\notin V$ and $V\ni y\notin U$.
\begin{subproof}
$X$ is hausdorff.
For all $x,y\in\carrier[X]$ such that $x\neq y$
there exist $U, V\in\opens[X]$ such that
$x\in U$ and $y\in V$ and $U$ is disjoint from $V$.
\end{subproof}
\end{proof}
\begin{definition}\label{is_regular}
$X$ is regular iff for all $C,p$ such that $p \in \carrier[X]$ and $p \notin C \in \closeds{X}$ we have there exists $U,C \in \opens[X]$ such that $p \in U$ and $C \subseteq V$ and $U \inter V = \emptyset$.
\end{definition}
\begin{abbreviation}\label{regular_space}
$X$ is a regular space iff $X$ is a topological space and $X$ is regular.
\end{abbreviation}
\begin{abbreviation}\label{teethree}
$X$ is \teethree\ iff $X$ is regular and $X$ is \teezero\ .
\end{abbreviation}
\begin{abbreviation}\label{teethree_space}
$X$ is a \teethree-space iff $X$ is a topological space and $X$ is \teethree\ .
\end{abbreviation}
\begin{proposition}\label{teethree_implies_closed_neighbourhood_in_open}
Let $X$ be a topological space.
Suppose $X$ is inhabited.
Suppose $X$ is \teethree\ .
For all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$.
\end{proposition}
\begin{proof}
Omitted.
%%Suppose $X$ is regular and kolmogorov.
%Fix $U \in \opens[X]$.
%Fix $x \in U$.
%Let $C = \carrier[X] \setminus U$.
%Then $C \in \closeds{X}$.
%$x \notin C$.
%$x \in \carrier[X]$.
%We show that there exists $A,B \in \opens[X]$ such that $x \in B$ and $C \subseteq A$ and $A \inter B = \emptyset$.
%We show that $B \subseteq (\carrier[X] \setminus A)$.
%$(\carrier[X] \setminus A) \subseteq (\carrier[X] \setminus (\carrier[X] \setminus U))$.
%$(\carrier[X] \setminus (\carrier[X] \setminus U)) = U$.
%$x \in B \subseteq (\carrier[X] \setminus A) \subseteq U$.
%Let $N = (\carrier[X] \setminus A)$.
%Then $N \in \closeds{X}$ and $x \in N$ and $N \subseteq U$.
%$N \in \neighbourhoods{x}{X}$.
\end{proof}
\begin{proposition}\label{teethree_iff_each_closed_is_intersection_of_its_closed_neighborhoods}
Let $X$ be a topological space.
Suppose $X$ is inhabited.
$X$ is \teethree\ iff for all $H \in \closeds{X}$ such that $F = \{ N \in \neighbourhoodsSet{H}{X} \mid N \in \closeds{X}\}$ we have $H = \inters{F}$.
\end{proposition}
\begin{proof}
We show that if $X$ is \teethree\ then for all $H \in \closeds{X}$ such that $F = \{ N \in \neighbourhoodsSet{H}{X} \mid N \in \closeds{X}\}$ we have $H = \inters{F}$.
\begin{subproof}
%For all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$.
Omitted.
\end{subproof}
We show that if for all $H \in \closeds{X}$ such that $F = \{ N \in \neighbourhoodsSet{H}{X} \mid N \in \closeds{X}\}$ we have $H = \inters{F}$ then $X$ is \teethree\ .
\begin{subproof}
Omitted.
\end{subproof}
\end{proof}
\begin{proposition}\label{teethree_iff_closed_neighbourhood_in_open}
Let $X$ be a topological space.
Suppose $X$ is inhabited.
$X$ is \teethree\ iff for all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$.
\end{proposition}
\begin{proof}
Omitted.
%Follows by \cref{teethree_iff_each_closed_is_intersection_of_its_closed_neighborhoods,teethree_implies_closed_neighbourhood_in_open}.
\end{proof}
\begin{proposition}\label{teethree_space_is_teetwo_space}
Let $X$ be a \teethree-space.
Suppose $X$ is inhabited.
Then $X$ is a \teetwo-space.
\end{proposition}
\begin{proof}
Omitted.
\end{proof}
For all $x,y \in \carrier[X]$ such that $x \neq y$ we have $x \notin \{y\}$.
It suffices to show that $X$ is hausdorff.
It suffices to show that for all $x \in \carrier[X]$ we have for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$.
Fix $x \in \carrier[X]$.
It suffices to show that for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$.
Fix $y \in \carrier[X]$.
We show that there exist $U,V,C$ such that $U,V \in \opens[X]$ and $C\in \closeds{X}$ and $x \in U$ and $y \in C \subseteq V$ and $U$ is disjoint from $V$.
\begin{subproof}
There exist $C' \in \closeds{X}$ such that $x \in \carrier[X]$ and $x \notin C' \in \closeds{X}$ and there exists $U',V' \in \opens[X]$ such that $x \in U'$ and $C' \subseteq V'$ and $U' \inter V' = \emptyset$.
There exists $U',V' \in \opens[X]$ such that $x \in U'$ and $C' \subseteq V'$ and $U' \inter V' = \emptyset$.
$U'$ is disjoint from $V'$.
$x \in U'$.
$x \notin C' \subseteq V'$.
$U',V' \in \opens[X]$.
$C' \in \closeds{X}$.
We show that there exist $K \in \closeds{X}$ such that $x \notin K \ni y$.
\begin{subproof}
$X$ is Kolmogorov.
For all $x',y'\in\carrier[X]$ such that $x'\neq y'$ there exist $H\in\opens[X]$ such that $x'\in H\not\ni y'$ or $x'\notin H\ni y'$.
we show that there exist $H \in \opens[X]$ such that $x \notin H \ni y$ or $y \notin H \ni x$.
\begin{subproof}
Omitted.
\end{subproof}
$H \subseteq \carrier[X]$ by \cref{opens_type,subseteq}.
Since $\carrier[X] \ni x \notin H$ or $\carrier[X] \ni y \notin H$, we have there exist $c \in H$.
Then $H \neq \carrier[X]$.
Since $y \in H$ or $x \in H$, we have $H \neq \emptyset$.
Let $K = \carrier[X] \setminus H$.
$K$ is inhabited.
$K \in \closeds{X}$ by \cref{complement_of_open_is_closed}.
$x \notin K \ni y$ or $y \notin K \ni x$.
\begin{byCase}
\caseOf{$y \in K$.} Trivial.
\caseOf{$y \notin K$.}
Then there exist $U'',V'' \in \opens[X]$ such that $x \in U''$ and $K \subseteq V''$ and $U'' \inter V'' = \emptyset$ by \cref{is_regular}.
Let $K' = \carrier[X] \setminus U''$.
$x \in K'$.
$K' \in \closeds{X}$.
\end{byCase}
\end{subproof}
Follows by assumption.
\end{subproof}
$y \in V$ by assumption.
Follows by assumption.
%\end{proof}
|