1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
|
\import{topology/topological-space.tex}
\import{topology/separation.tex}
\import{topology/continuous.tex}
\import{topology/basis.tex}
\import{numbers.tex}
\import{function.tex}
\import{set.tex}
\import{cardinal.tex}
\import{relation.tex}
\import{relation/uniqueness.tex}
\import{set/cons.tex}
\import{set/powerset.tex}
\import{set/fixpoint.tex}
\import{set/product.tex}
\section{Urysohns Lemma}
% In this section we want to proof Urysohns lemma.
% We try to follow the proof of Klaus Jänich in his book. TODO: Book reference
% The Idea is to construct staircase functions as a chain.
% The limit of our chain turns out to be our desired continuous function from a topological space $X$ to $[0,1]$.
% With the property that \[f\mid_{A}=1 \land f\mid_{B}=0\] for \[A,B\] closed sets.
%Chains of sets.
The first tept will be a formalisation of chain constructions.
\subsection{Chains of sets}
% Assume $A,B$ are subsets of a topological space $X$.
% As Jänich propose we want a special property on chains of subsets.
% We need a rising chain of subsets $\mathfrak{A} = (A_{0}, ... ,A_{r})$ of $A$, i.e.
% \begin{align}
% A = A_{0} \subset A_{1} \subset ... \subset A_{r} \subset X\setminus B
% \end{align}
% such that for all elements in this chain following holds,
% $\overline{A_{i-1}} \subset \interior{A_{i}}$.
% In this case we call the chain legal.
\begin{definition}\label{one_to_n_set}
$\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
\end{definition}
%%-----------------------
% Idea:
% A sequence could be define as a family of sets,
% together with the existence of an indexing function.
%
%%-----------------------
\begin{struct}\label{sequence}
A sequence $X$ is a onesorted structure equipped with
\begin{enumerate}
\item $\index$
\item $\indexset$
\end{enumerate}
such that
\begin{enumerate}
\item\label{indexset_is_subset_naturals} $\indexset[X] \subseteq \naturals$.
\item\label{index_is_bijection} $\index[X]$ is a bijection from $\indexset[X]$ to $\carrier[X]$.
\end{enumerate}
\end{struct}
\begin{definition}\label{cahin_of_subsets}
$C$ is a chain of subsets iff
$C$ is a sequence and for all $n,m \in \indexset[C]$ such that $n < m$ we have $\index[C](n) \subseteq \index[C](m)$.
\end{definition}
\begin{definition}\label{chain_of_n_subsets}
$C$ is a chain of $n$ subsets iff
$C$ is a chain of subsets and $n \in \indexset[C]$
and for all $m \in \naturals$ such that $m \leq n$ we have $m \in \indexset[C]$.
\end{definition}
% TODO: The Notion above should be generalised to sequences since we need them as well for our limit
% and also for the subproof of continuity of the limit.
% \begin{definition}\label{legal_chain}
% $C$ is a legal chain of subsets of $X$ iff
% $C \subseteq \pow{X}$. %and
% %there exist $f \in \funs{C}{\naturals}$ such that
% %for all $x,y \in C$ we have if $f(x) < f(y)$ then $x \subset y \land \closure{x} \subset \interior{y}$.
% \end{definition}
% TODO: We need a notion for declarinf new properties to existing thing.
%
% The following gives a example and a wish want would be nice to have:
% "A (structure) is called (adjectiv of property), if"
%
% This should then be use als follows:
% Let $X$ be a (adjectiv_1) ... (adjectiv_n) (structure_word).
% Which should be translated to fol like this:
% ?[X]: is_structure(X) & is_adjectiv_1(X) & ... & is_adjectiv_n(X)
% ---------------------------------------------------------------
\subsection{staircase function}
\begin{definition}\label{minimum}
$\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
\end{definition}
\begin{definition}\label{maximum}
$\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
\end{definition}
\begin{definition}\label{intervalclosed}
$\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
\end{definition}
\begin{definition}\label{intervalopen}
$\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$.
\end{definition}
\begin{struct}\label{staircase_function}
A staircase function $f$ is a onesorted structure equipped with
\begin{enumerate}
\item $\chain$
\end{enumerate}
such that
\begin{enumerate}
\item \label{staircase_is_function} $f$ is a function to $\intervalclosed{\zero}{1}$.
\item \label{staircase_domain} $\dom{f}$ is a topological space.
\item \label{staricase_def_chain} $C$ is a chain of subsets.
\item \label{staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$.
\item \label{staircase_behavoir_index_zero} $f(\index[C](1))= 1$.
\item \label{staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$.
\item \label{staircase_chain_indeset} There exist $n$ such that $\indexset[C] = \seq{\zero}{n}$.
\item \label{staircase_behavoir_index_arbetrray} for all $n \in \indexset[C]$
such that $n \neq \zero$ we have $f(\index[C](n) \setminus \index[C](n-1)) = \rfrac{n}{ \max{\indexset[C]} }$.
\end{enumerate}
\end{struct}
\begin{definition}\label{legal_staircase}
$f$ is a legal staircase function iff
$f$ is a staircase function and
for all $n,m \in \indexset[\chain[f]]$ such that $n \leq m$ we have $f(\index[\chain[f]](n)) \leq f(\index[\chain[f]](m))$.
\end{definition}
\begin{abbreviation}\label{urysohnspace}
$X$ is a urysohn space iff
$X$ is a topological space and
for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$
we have there exist $A',B' \in \opens[X]$
such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.
\end{abbreviation}
\begin{definition}\label{urysohnchain}
$C$ is a urysohnchain in $X$ of cardinality $k$ iff %<---- TODO: cardinality unused!
$C$ is a chain of subsets and
for all $A \in C$ we have $A \subseteq X$ and
for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$.
\end{definition}
\begin{definition}\label{urysohnchain_without_cardinality}
$C$ is a urysohnchain in $X$ iff
$C$ is a chain of subsets and
for all $A \in C$ we have $A \subseteq X$ and
for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$.
\end{definition}
\begin{abbreviation}\label{infinte_sequence}
$S$ is a infinite sequence iff $S$ is a sequence and $\indexset[S]$ is infinite.
\end{abbreviation}
\begin{definition}\label{infinite_product}
$X$ is the infinite product of $Y$ iff
$X$ is a infinite sequence and for all $i \in \indexset[X]$ we have $\index[X](i) = Y$.
\end{definition}
\begin{definition}\label{refinmant}
$C'$ is a refinmant of $C$ iff $C'$ is a urysohnchain in $X$
and for all $x \in C$ we have $x \in C'$
and for all $y \in C$ such that $y \subset x$ we have there exist $c \in C'$ such that $y \subset c \subset x$
and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$.
\end{definition}
\begin{abbreviation}\label{two}
$\two = \suc{1}$.
\end{abbreviation}
\begin{lemma}\label{two_in_reals}
$\two \in \reals$.
\end{lemma}
\begin{lemma}\label{two_in_naturals}
$\two \in \naturals$.
\end{lemma}
\begin{inductive}\label{power_of_two}
Define $\powerOfTwoSet \subseteq (\naturals \times \naturals)$.
\begin{enumerate}
\item $(\zero, 1) \in \powerOfTwoSet$.
\item If $(m,k) \in \powerOfTwoSet$, then $(m+1, k \rmul \two) \in \powerOfTwoSet$.
\end{enumerate}
\end{inductive}
\begin{abbreviation}\label{pot}
$\pot = \powerOfTwoSet$.
\end{abbreviation}
\begin{lemma}\label{dom_pot}
$\dom{\pot} = \naturals$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}\label{ran_pot}
$\ran{\pot} \subseteq \naturals$.
\end{lemma}
\begin{axiom}\label{pot1}
$\pot \in \funs{\naturals}{\naturals}$.
\end{axiom}
\begin{axiom}\label{pot2}
For all $n \in \naturals$ we have there exist $k\in \naturals$ such that $(n, k) \in \powerOfTwoSet$ and $\apply{\pot}{n}=k$.
%$\pot(n) = k$ iff there exist $x \in \powerOfTwoSet$ such that $x = (n,k)$.
\end{axiom}
%Without this abbreviation \pot cant be sed as a function in the standard sense
\begin{abbreviation}\label{pot_as_function}
$\pot(n) = \apply{\pot}{n}$.
\end{abbreviation}
\begin{proposition}\label{urysohnchain_induction_begin}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
Suppose $A \inter B$ is empty.
Then there exist $U$
such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$
and $\indexset[U]= \{\zero, 1\}$
and $\index[U](\zero) = A$
and $\index[U](1) = (\carrier[X] \setminus B)$.
%$U$ is a urysohnchain in $X$.
\end{proposition}
\begin{proof}
Omitted.
% We show that $U$ is a sequence.
% \begin{subproof}
% Omitted.
% \end{subproof}
%
% We show that $A \subseteq (\carrier[X] \setminus B)$.
% \begin{subproof}
% Omitted.
% \end{subproof}
%
% We show that $U$ is a chain of subsets.
% \begin{subproof}
% For all $n \in \indexset[U]$ we have $n = \zero \lor n = 1$.
% It suffices to show that for all $n \in \indexset[U]$ we have
% for all $m \in \indexset[U]$ such that
% $n < m$ we have $\index[U](n) \subseteq \index[U](m)$.
% Fix $n \in \indexset[U]$.
% Fix $m \in \indexset[U]$.
% \begin{byCase}
% \caseOf{$n = 1$.} Trivial.
% \caseOf{$n = \zero$.}
% \begin{byCase}
% \caseOf{$m = \zero$.} Trivial.
% \caseOf{$m = 1$.} Omitted.
% \end{byCase}
% \end{byCase}
% \end{subproof}
%
% $A \subseteq X$.
% $(X \setminus B) \subseteq X$.
% We show that for all $x \in U$ we have $x \subseteq X$.
% \begin{subproof}
% Omitted.
% \end{subproof}
%
% We show that $\closure{A}{X} \subseteq \interior{(X \setminus B)}{X}$.
% \begin{subproof}
% Omitted.
% \end{subproof}
% We show that for all $n,m \in \indexset[U]$ such that $n < m$ we have
% $\closure{\index[U](n)}{X} \subseteq \interior{\index[U](m)}{X}$.
% \begin{subproof}
% Omitted.
% \end{subproof}
\end{proof}
\begin{proposition}\label{urysohnchain_induction_begin_step_two}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
Suppose $A \inter B$ is empty.
Suppose there exist $U$
such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$
and $\indexset[U]= \{\zero, 1\}$
and $\index[U](\zero) = A$
and $\index[U](1) = (\carrier[X] \setminus B)$.
Then $U$ is a urysohnchain in $X$.
\end{proposition}
\begin{proof}
Omitted.
\end{proof}
\begin{proposition}\label{t_four_propositon}
Let $X$ be a urysohn space.
Then for all $A,B \subseteq X$ such that $\closure{A}{X} \subseteq \interior{B}{X}$
we have there exists $C \subseteq X$ such that
$\closure{A}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{B}{X}$.
\end{proposition}
\begin{proof}
Omitted.
\end{proof}
\begin{proposition}\label{urysohnchain_induction_step_existence}
Let $X$ be a urysohn space.
Suppose $U$ is a urysohnchain in $X$.
Then there exist $U'$ such that $U'$ is a refinmant of $U$ and $U'$ is a urysohnchain in $X$.
\end{proposition}
\begin{proof}
% U = ( A_{0}, A_{1}, A_{2}, ... , A_{n-1}, A_{n})
% U' = ( A_{0}, A'_{1}, A_{1}, A'_{2}, A_{2}, ... A_{n-1}, A'_{n}, A_{n})
% Let $m = \max{\indexset[U]}$.
% For all $n \in (\indexset[U] \setminus \{m\})$ we have there exist $C \subseteq X$
% such that $\closure{\index[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\index[U](n+1)}{X}$.
%\begin{definition}\label{refinmant}
% $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and
% for all $y \in C$ such that $y \subset x$
% we have there exist $c \in C'$ such that $y \subset c \subset x$
% and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$.
%\end{definition}
Omitted.
\end{proof}
\begin{proposition}\label{existence_of_staircase_function}
Let $X$ be a urysohn space.
Suppose $U$ is a urysohnchain in $X$ and $U$ has cardinality $k$.
Suppose $k \neq \zero$.
Then there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
and for all $n \in \indexset[U]$ we have for all $x \in \index[U](n)$
we have $f(x) = \rfrac{n}{k}$.
\end{proposition}
\begin{proof}
Omitted.
\end{proof}
\begin{abbreviation}\label{refinment_abbreviation}
$x \refine y$ iff $x$ is a refinmant of $y$.
\end{abbreviation}
\begin{abbreviation}\label{sequence_of_functions}
$f$ is a sequence of functions iff $f$ is a sequence
and for all $g \in \carrier[f]$ we have $g$ is a function.
\end{abbreviation}
\begin{abbreviation}\label{sequence_in_reals}
$s$ is a sequence of real numbers iff $s$ is a sequence
and for all $r \in \carrier[s]$ we have $r \in \reals$.
\end{abbreviation}
\begin{axiom}\label{abs_behavior1}
If $x \geq \zero$ then $\abs{x} = x$.
\end{axiom}
\begin{axiom}\label{abs_behavior2}
If $x < \zero$ then $\abs{x} = \neg{x}$.
\end{axiom}
\begin{abbreviation}\label{converge}
$s$ converges iff $s$ is a sequence of real numbers
and $\indexset[s]$ is infinite
and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have
there exist $N \in \indexset[s]$ such that
for all $m \in \indexset[s]$ such that $m > N$
we have $\abs{\index[s](N) - \index[s](m)} < \epsilon$.
\end{abbreviation}
\begin{definition}\label{limit_of_sequence}
$x$ is the limit of $s$ iff $s$ is a sequence of real numbers
and $x \in \reals$ and
for all $\epsilon \in \reals$ such that $\epsilon > \zero$
we have there exist $n \in \indexset[s]$ such that
for all $m \in \indexset[s]$ such that $m > n$
we have $\abs{x - \index[s](n)} < \epsilon$.
\end{definition}
\begin{proposition}\label{existence_of_limit}
Let $s$ be a sequence of real numbers.
Then $s$ converges iff there exist $x \in \reals$
such that $x$ is the limit of $s$.
\end{proposition}
\begin{proof}
Omitted.
\end{proof}
\begin{definition}\label{limit_sequence}
$x$ is the limit sequence of $f$ iff
$x$ is a sequence and $\indexset[x] = \dom{f}$ and
for all $n \in \indexset[x]$ we have
$\index[x](n) = f(n)$.
\end{definition}
\begin{definition}\label{realsminus}
$\realsminus = \{r \in \reals \mid r < \zero\}$.
\end{definition}
\begin{abbreviation}\label{realsplus}
$\realsplus = \reals \setminus \realsminus$.
\end{abbreviation}
\begin{proposition}\label{intervalclosed_subseteq_reals}
Suppose $a,b \in \reals$.
Suppose $a < b$.
Then $\intervalclosed{a}{b} \subseteq \reals$.
\end{proposition}
\begin{lemma}\label{fraction1}
Let $x \in \reals$.
Then for all $y \in \reals$ such that $x \neq y$ we have there exists $r \in \rationals$ such that $y < r < x$ or $x < r < y$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}\label{frection2}
Suppose $a,b \in \reals$.
Suppose $a < b$.
Then $\intervalopen{a}{b}$ is infinite.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}\label{frection3}
Suppose $a \in \reals$.
Suppose $a < \zero$.
Then there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\zero < \rfrac{1}{\pot(N')} < a$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{proposition}\label{fraction4}
Suppose $a,b,\epsilon \in \reals$.
Suppose $\epsilon > \zero$.
$\abs{a - b} < \epsilon$ iff $b \in \intervalopen{(a - \epsilon)}{(a + \epsilon)}$.
\end{proposition}
\begin{proof}
Omitted.
\end{proof}
\begin{proposition}\label{fraction5}
Suppose $a,b,\epsilon \in \reals$.
Suppose $\epsilon > \zero$.
$b \in \intervalopen{(a - \epsilon)}{(a + \epsilon)}$ iff $a \in \intervalopen{(b - \epsilon)}{(b + \epsilon)}$.
\end{proposition}
\begin{proof}
Omitted.
\end{proof}
\begin{proposition}\label{fraction6}
Suppose $a,\epsilon \in \reals$.
Suppose $\epsilon > \zero$.
$\intervalopen{(a - \epsilon)}{(a + \epsilon)} = \{r \in \reals \mid (a - \epsilon) < r < (a + \epsilon)\} $.
\end{proposition}
\begin{abbreviation}\label{epsilonball}
$\epsBall{a}{\epsilon} = \intervalopen{(a - \epsilon)}{(a + \epsilon)}$.
\end{abbreviation}
\begin{proposition}\label{fraction7}
Suppose $a,\epsilon \in \reals$.
Suppose $\epsilon > \zero$.
Then there exist $b \in \rationals$ such that $b \in \epsBall{a}{\epsilon}$.
\end{proposition}
\begin{proof}
Omitted.
\end{proof}
%\begin{definition}\label{sequencetwo}
% $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$.
%\end{definition}
%
%\begin{proposition}\label{sequence_existence}
% Suppose $N \subseteq \naturals$.
% Suppose $M \subseteq \naturals$.
% Suppose $N = M$.
% Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo.
%\end{proposition}
%\begin{proof}
% Let $f(x) = x$ for $x \in N$.
% Let $Z=(N,f,M)$.
%\end{proof}
%The proposition above and the definition prove false together with
% ordinal_subseteq_unions, omega_is_an_ordinal, powerset_intro, in_irrefl
\begin{theorem}\label{urysohn}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
Suppose $A \inter B$ is empty.
Suppose $\carrier[X]$ is inhabited.
There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous.
\end{theorem}
\begin{proof}
There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$
and $\indexset[\eta] = \{\zero, 1\}$
and $\index[\eta](\zero) = A$
and $\index[\eta](1) = (\carrier[X] \setminus B)$ by \cref{urysohnchain_induction_begin}.
We show that there exist $\zeta$ such that $\zeta$ is a sequence
and $\indexset[\zeta] = \naturals$
and $\eta \in \carrier[\zeta]$ and $\index[\zeta](\eta) = \zero$
and for all $n \in \indexset[\zeta]$ we have $n+1 \in \indexset[\zeta]$
and $\index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)$.
\begin{subproof}
%Let $\alpha = \{x \in C \mid \exists y \in \alpha. x \refine y \lor x = \eta\}$.
%Let $\beta = \{ (n,x) \mid n \in \naturals \mid \exists m \in \naturals. \exists y \in \alpha. (x \in \alpha) \land ((x \refine y \land m = n+1 )\lor ((n,x) = (\zero,\eta)))\}$.
%
% % TODO: Proof that \beta is a function which would be used for the indexing.
%For all $n \in \naturals$ we have there exist $x \in \alpha$ such that $(n,x) \in \beta$.
%$\dom{\beta} = \naturals$.
%$\ran{\beta} = \alpha$.
%$\beta \in \funs{\naturals}{\alpha}$.
%Take $\zeta$ such that $\carrier[\zeta] = \alpha$ and $\indexset[\zeta] = \naturals$ and $\index[\zeta] = \beta$.
Omitted.
\end{subproof}
Let $\alpha = \carrier[X]$.
%Define $f : \alpha \to \naturals$ such that $f(x) =$
%\begin{cases}
% & 1 & \text{if} x \in A \lor x \in B
% & k & \text{if} \exists k \in \naturals
%\end{cases}
%
%We show that there exist $k \in \funs{\carrier[X]}{\reals}$ such that
%$k(x)$
%For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$.
We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$.
\begin{subproof}
Omitted.
\end{subproof}
We show that for all $m \in \indexset[\zeta]$ we have $\pot(m) \neq \zero$.
\begin{subproof}
Omitted.
\end{subproof}
We show that for all $m \in \naturals$ we have $\pot(m) \in \naturals$.
\begin{subproof}
Omitted.
\end{subproof}
We show that for all $m \in \indexset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
and for all $n \in \indexset[\index[\zeta](m)]$ we have for all $x \in \index[\index[\zeta](m)](n)$ such that $x \notin \index[\index[\zeta](m)](n-1)$
we have $f(x) = \rfrac{n}{\pot(m)}$.
\begin{subproof}
Fix $m \in \indexset[\zeta]$.
$\index[\zeta](m)$ is a urysohnchain in $X$.
Define $o : \alpha \to \intervalclosed{\zero}{1}$ such that $o(x) =$
\begin{cases}
& 0 & \text{if} x \in A
& 1 & \text{if} x \in B
& \rfrac{n}{m} & \text{if} \exists n \in \naturals. x \in \index[\index[\zeta](m)](n) \land x \notin \index[\index[\zeta](m)](n-1)
\end{cases}
\end{subproof}
%The sequenc of the functions
Let $\gamma = \{
(n,f) \mid
n \in \naturals \mid
\forall n' \in \indexset[\index[\zeta](n)].
\forall x \in \carrier[X].
f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}} \land
% (n,f) \in \gamma <=> \phi(n,f)
% with \phi (n,f) :=
% (x \in (A_k) \ (A_k-1)) ==> f(x) = ( k / 2^n )
% \/ (x \notin A_k for all k \in {1,..,n} ==> f(x) = 1
( (n' = \zero)
\land (x \in \index[\index[\zeta](n)](n'))
\land (f(x)= \zero) )
\lor
( (n' > \zero)
\land (x \in \index[\index[\zeta](n)](n'))
\land (x \notin \index[\index[\zeta](n)](n'-1))
\land (f(x) = \rfrac{n'}{\pot(n)}) )
\lor
( (x \notin \index[\index[\zeta](n)](n'))
\land (f(x) = 1) )
\}$.
Let $\gamma(n) = \apply{\gamma}{n}$ for $n \in \naturals$.
We show that for all $n \in \naturals$ we have $\gamma(n)$
is a function from $\carrier[X]$ to $\reals$.
\begin{subproof}
Omitted.
\end{subproof}
We show that for all $n \in \naturals$ we have $\gamma(n)$
is a function from $\carrier[X]$ to $\intervalclosed{\zero}{1}$.
\begin{subproof}
Omitted.
\end{subproof}
We show that $\gamma$ is a function from $\naturals$ to $\reals$.
\begin{subproof}
Omitted.
\end{subproof}
We show that for all $x,k,n$ such that $n\in \naturals$ and $k \in \naturals$ and $x \in \index[\index[\zeta](n)](k)$ we have $\apply{\gamma(n)}{x} = \rfrac{k}{\pot(n)}$.
\begin{subproof}
Omitted.
\end{subproof}
We show that for all $n \in \naturals$ for all $x \in \carrier[X]$ we have $\apply{\gamma(n)}{x} \in \intervalclosed{\zero}{1}$.
\begin{subproof}
Fix $n \in \naturals$.
Fix $x \in \carrier[X]$.
\end{subproof}
We show that
if $h$ is a function from $\naturals$ to $\reals$ and for all $n \in \naturals$ we have $h(n) \leq h(n+1)$ and there exist $B \in \reals$ such that $h(n) < B$
then there exist $k \in \reals$ such that for all $m \in \naturals$ we have $h(m) \leq k$ and for all $k' \in \reals$ such that $k' < k$ we have there exist $M \in \naturals$ such that $k' < h(M)$.
\begin{subproof}
Omitted.
\end{subproof}
We show that there exist $g$ such that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that $g(x)= k$ and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
\begin{subproof}
We show that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
\begin{subproof}
Fix $x \in \carrier[X]$.
% Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
%Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
\end{subproof}
\end{subproof}
Let $G(x) = g(x)$ for $x \in \carrier[X]$.
We have $\dom{G} = \carrier[X]$.
We show that for all $x \in \dom{G}$ we have $G(x) \in \reals$.
\begin{subproof}
Fix $x \in \dom{G}$.
It suffices to show that $g(x) \in \reals$.
There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$.
\begin{subproof}
Fix $\epsilon \in \reals$.
\end{subproof}
Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}.
\end{subproof}
We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$.
\begin{subproof}
Fix $x \in \dom{G}$.
Then $x \in \carrier[X]$.
\begin{byCase}
\caseOf{$x \in A$.}
For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$.
\caseOf{$x \notin A$.}
\begin{byCase}
\caseOf{$x \in B$.}
For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$.
\caseOf{$x \notin B$.}
Omitted.
\end{byCase}
\end{byCase}
\end{subproof}
We show that $G \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$.
\begin{subproof}
It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}.
It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$.
Fix $x \in \dom{G}$.
Then $x \in \carrier[X]$.
$g(x) = G(x)$.
We have $G(x) \in \reals$.
$\zero \leq G(x) \leq 1$.
We have $G(x) \in \intervalclosed{\zero}{1}$ .
\end{subproof}
We show that $G(A) = \zero$.
\begin{subproof}
Omitted.
\end{subproof}
We show that $G(B) = 1$.
\begin{subproof}
Omitted.
\end{subproof}
We show that $G$ is continuous.
\begin{subproof}
Omitted.
\end{subproof}
%Suppose $\eta$ is a urysohnchain in $X$.
%Suppose $\carrier[\eta] =\{A, (X \setminus B)\}$
%and $\indexset[\eta] = \{\zero, 1\}$
%and $\index[\eta](\zero) = A$
%and $\index[\eta](1) = (X \setminus B)$.
%Then $\eta$ is a urysohnchain in $X$.
% Take $P$ such that $P$ is a infinite sequence and $\indexset[P] = \naturals$ and for all $i \in \indexset[P]$ we have $\index[P](i) = \pow{X}$.
%
% We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence
% and for all $i \in \indexset[\zeta]$ we have
% $\index[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$
% and $A \subseteq \index[\zeta](i)$
% and $\index[\zeta](i) \subseteq (X \setminus B)$
% and for all $j \in \indexset[\zeta]$ such that
% $j < i$ we have for all $x \in \index[\zeta](j)$ we have $x \in \index[\zeta](i)$.
% \begin{subproof}
% Omitted.
% \end{subproof}
%
%
%
%
%
%
%
%
% We show that there exist $g \in \funs{X}{\intervalclosed{\zero}{1}}$ such that $g(A)=1$ and $g(X\setminus A) = \zero$.
% \begin{subproof}
% Omitted.
% \end{subproof}
% $g$ is a staircase function and $\chain[g] = C$.
% $g$ is a legal staircase function.
%
%
% We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$
% and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.
% \begin{subproof}
% Omitted.
% \end{subproof}
% We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$.
% \begin{subproof}
% Omitted.
% \end{subproof}
% Proof Sheme Idea:
% -We proof for n=1 that C_{n} is a chain and legal
% -Then by induction with P(n+1) is refinmant of P(n)
% -Therefore we have a increing refinmant of these Chains such that our limit could even apply
% ---------------------------------------------------------
% We show that there exist $f \in \funs{\naturals}{\funs{X}{\intervalclosed{0}{1}}}$ such that $f(n)$ is a staircase function. %TODO: Define Staircase function
% \begin{subproof}
% Omitted.
% \end{subproof}
% Formalization idea of enumarted sequences:
% - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals}
% - This should give all finite and infinte enumarable sequences
% - Introduce a notion for the indexing of these enumarable sequences.
% - Then we can define the limit of a enumarted sequence of functions.
% ---------------------------------------------------------
%
% Here we need a limit definition for sequences of functions
% We show that there exist $F \in \funs{X}{\intervalclosed{0}{1}}$ such that $F = \limit{set of the staircase functions}$
% \begin{subproof}
% Omitted.
% \end{subproof}
%
% We show that $F(A) = 1$.
% \begin{subproof}
% Omitted.
% \end{subproof}
%
% We show that $F(B) = 0$.
% \begin{subproof}
% Omitted.
% \end{subproof}
%
% We show that $F$ is continuous.
% \begin{subproof}
% Omitted.
% \end{subproof}
\end{proof}
\begin{theorem}\label{safe}
Contradiction.
\end{theorem}
|