summaryrefslogtreecommitdiff
path: root/library/topology/urysohn2.tex
blob: ce6d74223b98322e9ace4a9c27cebcc76a7729e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
\import{topology/topological-space.tex}
\import{topology/separation.tex}
\import{topology/continuous.tex}
\import{topology/basis.tex}
\import{numbers.tex}
\import{function.tex}
\import{set.tex}
\import{cardinal.tex}
\import{relation.tex}
\import{relation/uniqueness.tex}
\import{set/cons.tex}
\import{set/powerset.tex}
\import{set/fixpoint.tex}
\import{set/product.tex}
\import{topology/real-topological-space.tex}
\import{set/equinumerosity.tex}

\section{Urysohns Lemma}




\begin{definition}\label{sequence}
    $X$ is a sequence iff $X$ is a function and $\dom{X} \subseteq \naturals$.
\end{definition}


\begin{abbreviation}\label{urysohnspace}
    $X$ is a urysohn space iff
    $X$ is a topological space and
    for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$
    we have there exist $A',B' \in \opens[X]$
    such that  $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.    
\end{abbreviation}


\begin{abbreviation}\label{at}
    $\at{f}{n} = f(n)$.
\end{abbreviation}


\begin{definition}\label{chain_of_subsets}
    $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$ and for all $m \in \dom{X}$ such that $m > n$ we have $\at{X}{n} \subseteq \at{X}{m}$. 
\end{definition}


\begin{definition}\label{urysohnchain}%<-- zulässig
    $X$ is a urysohnchain of $Y$ iff $X$ is a chain of subsets in $Y$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $\closure{\at{X}{n}}{Y} \subseteq \interior{\at{X}{m}}{Y}$.
\end{definition}

\begin{definition}\label{urysohn_finer_set}
    $A$ is finer between $X$ to $Y$ in $U$ iff $\closure{X}{U} \subseteq \interior{A}{U}$ and $\closure{A}{U} \subseteq \interior{Y}{U}$.
\end{definition}

\begin{definition}\label{finer} %<-- verfeinerung 
    $Y$ is finer then $X$ in $U$ iff for all $n \in \dom{X}$ we have $\at{X}{n} \in \ran{Y}$ and for all $m \in \dom{X}$ such that $n < m$ we have there exist $k \in \dom{Y}$ such that $\at{Y}{k}$ is finer between $\at{X}{n}$ to $\at{X}{m}$ in $U$.
\end{definition}

\begin{definition}\label{follower_index}
    $y$ follows $x$ in $I$ iff $x < y$ and $x,y \in I$ and for all $i \in I$ such that $x < i$ we have $y \leq i$.
\end{definition}

\begin{definition}\label{finer_smallest_step}
    $Y$ is a minimal finer extention of $X$ in $U$ iff $Y$ is finer then $X$ in $U$ and for all $x_1,x_2 \in \dom{X}$ such that $x_1$ follows $x_2$ in $\dom{X}$ we have there exist $y \in \dom{Y}$ such that $y$ follows $x_1$ in $\dom{X}$ and $x_2$ follows $y$ in $\dom{X}$.
\end{definition}

\begin{definition}\label{sequence_of_reals}
    $X$ is a sequence of reals iff $\ran{X} \subseteq \reals$.
\end{definition}


\begin{definition}\label{pointwise_convergence}
    $X$ converge to $x$ iff for all $\epsilon \in \realsplus$ there exist $N \in \dom{X}$ such that for all $n \in \dom{X}$ such that $n > N$ we have $\at{X}{n} \in \epsBall{x}{\epsilon}$.
\end{definition}


\begin{proposition}\label{iff_sequence}
    Suppose $X$ is a function.
    Suppose $\dom{X} \subseteq \naturals$.
    Then $X$ is a sequence.
\end{proposition}

\begin{definition}\label{lifted_urysohn_chain}
    $U$ is a lifted urysohnchain of $X$ iff $U$ is a sequence and $\dom{U} = \naturals$ and for all $n \in \dom{U}$ we have $\at{U}{n}$ is a urysohnchain of $X$ and $\at{U}{\suc{n}}$ is a minimal finer extention of $\at{U}{n}$ in $X$.
\end{definition}

\begin{definition}\label{normal_ordered_urysohnchain}
    $U$ is normal ordered iff there exist $n \in \naturals$ such that $\dom{U} = \seq{\zero}{n}$.
\end{definition}

\begin{definition}\label{bijection_of_urysohnchains}
    $f$ is consistent on $X$ to $Y$ iff $f$ is a bijection from $\dom{X}$ to $\dom{Y}$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $f(n) < f(m)$.
\end{definition}

\begin{proposition}\label{naturals_in_transitive}
    $\naturals$ is a \in-transitive set.
\end{proposition}
\begin{proof}
    Follows by \cref{nat_is_transitiveset}.
\end{proof}

\begin{proposition}\label{naturals_elem_in_transitive}
    If $n \in \naturals$ then $n$ is \in-transitive and every element of $n$ is \in-transitive. 
    %If $n$ is a natural number then $n$ is \in-transitive and every element of $n$ is \in-transitive. 
\end{proposition}

\begin{proposition}\label{natural_number_is_ordinal_for_all}
    For all $n \in \naturals$ we have $n$ is a ordinal.
\end{proposition}

\begin{proposition}\label{zero_is_in_minimal}
    $\zero$ is an \in-minimal element of $\naturals$.
\end{proposition}

\begin{proposition}\label{natural_rless_eq_precedes}
    For all $n,m \in \naturals$ we have $n \precedes m$ iff $n \in m$.
\end{proposition}

\begin{proposition}\label{naturals_precedes_suc}
    For all $n \in \naturals$ we have $n \precedes \suc{n}$.
\end{proposition}

\begin{proposition}\label{zero_is_empty}
    There exists no $x$ such that $x \in \zero$.
\end{proposition}
\begin{proof}
    Follows by \cref{notin_emptyset}.
\end{proof}

\begin{proposition}\label{one_is_positiv}
    $1$ is positiv.
\end{proposition}

\begin{proposition}\label{suc_of_positive_is_positive}
    For all $n \in \naturals$ such that $n$ is positiv we have $\suc{n}$ is positiv.
\end{proposition}

\begin{proposition}\label{naturals_are_positiv_besides_zero}
    For all $n \in \naturals$ such that $n \neq \zero$ we have $n$ is positiv.
\end{proposition}
\begin{proof}[Proof by \in-induction on $n$]
    Assume $n \in \naturals$.
    \begin{byCase}
        \caseOf{$n = \zero$.} Trivial.
        \caseOf{$n \neq \zero$.}
            Take $k \in \naturals$ such that $\suc{k} = n$.
    \end{byCase}
\end{proof}



\begin{proposition}\label{naturals_sum_eq_zero}
    For all $n,m \in \naturals$ we have if $n+m = \zero$ then $n = m = \zero$.
\end{proposition}
\begin{proof}
    Omitted.
\end{proof}

\begin{proposition}\label{no_natural_between_n_and_suc_n}
    For all $n,m \in \naturals$ we have not $n < m < \suc{n}$.
\end{proposition}
\begin{proof}
    Omitted.
\end{proof}

\begin{proposition}\label{naturals_is_zero_one_or_greater}
    $\naturals = \{n \in \naturals \mid n > 1 \lor n = 1 \lor n = \zero\}$.
\end{proposition}
\begin{proof}
    Omitted.
\end{proof}

\begin{proposition}\label{naturals_one_zero_or_greater}
    For all $l \in \naturals$ we have if $l < 1$ then $l = \zero$.
\end{proposition}
\begin{proof}
    Follows by \cref{reals_order,naturals_subseteq_reals,subseteq,one_in_reals,naturals_is_zero_one_or_greater}.
\end{proof}

\begin{proposition}\label{naturals_rless_existence_of_lesser_natural}
    For all $n \in \naturals$ we have for all $m \in \naturals$ such that $m < n$ there exist $k \in \naturals$ such that $m + k = n$.
\end{proposition}
\begin{proof}[Proof by \in-induction on $n$]
    Assume $n \in \naturals$.
    
    \begin{byCase}
        \caseOf{$n = \zero$.} 
            
            We show that for all $m \in \naturals$ such that $m < n$ we have there exist $k \in \naturals$ such that $m + k = n$.
            \begin{subproof}[Proof by \in-induction on $m$]
                Assume $m \in \naturals$.
                \begin{byCase}
                    \caseOf{$m = \zero$.}
                        Trivial.
                    \caseOf{$m \neq \zero$.}
                        Trivial.
                \end{byCase}
            \end{subproof}
        \caseOf{$n = 1$.}
            Fix $m$.
            For all $l \in \naturals$ we have if $l < 1$ then $l = \zero$.
            Then $\zero + 1 = 1$.
        \caseOf{$n > 1$.} 
            Take $l \in \naturals$ such that $\suc{l} = n$.
            Omitted.
    \end{byCase}
\end{proof}


\begin{proposition}\label{rless_eq_in_for_naturals}
    For all $n,m \in \naturals$ such that $n < m$ we have $n \in m$. 
\end{proposition}
\begin{proof}
    We show that for all $n \in \naturals$ we have for all $m \in \naturals$ such that $m < n$ we have $m \in n$.
    \begin{subproof}[Proof by \in-induction on $n$]
        Assume $n \in \naturals$.
        We show that for all $m \in \naturals$ such that$m < n$ we have $m \in n$.
        \begin{subproof}[Proof by \in-induction on $m$]
            Assume $m \in \naturals$.
            \begin{byCase}
                \caseOf{$\suc{m}=n$.}
                \caseOf{$\suc{m}\neq n$.}  
                      \begin{byCase}
                        \caseOf{$n = \zero$.}
                        \caseOf{$n \neq \zero$.}
                            Take $l \in \naturals$ such that $\suc{l} = n$.
                            Omitted.

                      \end{byCase}
            \end{byCase}
        \end{subproof}
    \end{subproof}
    
    %Fix $n \in \naturals$.

    %\begin{byCase}
    %    \caseOf{$n = \zero$.}
    %        For all $k \in \naturals$ we have $k = \zero$ or $\zero < k$.
    %        
    %    \caseOf{$n \neq \zero$.}
    %        Fix $m \in \naturals$.
    %        It suffices to show that $m \in n$.
    %\end{byCase}
    
\end{proof}



\begin{proposition}\label{naturals_leq}
    For all $n \in \naturals$ we have $\zero \leq n$.
\end{proposition}




\begin{proposition}\label{naturals_leq_on_suc}
    For all $n,m \in \naturals$ such that $m < \suc{n}$ we have $m \leq n$.
\end{proposition}
\begin{proof}
    Omitted.
\end{proof}

\begin{proposition}\label{x_in_seq_iff}
    Suppose $n,m,x \in \naturals$.
    $x \in \seq{n}{m}$ iff $n \leq x \leq m$.
\end{proposition}

\begin{proposition}\label{seq_zero_to_n_eq_to_suc_n}
    For all $n \in \naturals$ we have $\seq{\zero}{n} = \suc{n}$.
\end{proposition}
\begin{proof} [Proof by \in-induction on $n$]
    Assume $n \in \naturals$.
    $n \in \naturals$.
    For all $m \in n$ we have $m \in \naturals$.
    \begin{byCase}
        \caseOf{$n = \zero$.}
            It suffices to show that $1 = \seq{\zero}{\zero}$.
            Follows by set extensionality.
        \caseOf{$n \neq \zero$.}
            Take $k$ such that $k \in \naturals$ and $\suc{k} = n$.
            Then $k \in n$.
            Therefore $\seq{\zero}{k} = \suc{k}$.
            We show that $\seq{\zero}{n} = \seq{\zero}{k} \union \{n\}$.
            \begin{subproof}
                We show that $\seq{\zero}{n} \subseteq \seq{\zero}{k} \union \{n\}$.
                \begin{subproof}
                    It suffices to show that for all $x \in \seq{\zero}{n}$ we have $x \in \seq{\zero}{k} \union \{n\}$.
                    $n \in \naturals$.
                    $\zero \leq n$.
                    $n \leq n$.
                    We have $n \in \seq{\zero}{n}$.
                    Therefore $\seq{\zero}{n}$ is inhabited.
                    Take $x$ such that $x \in \seq{\zero}{n}$.
                    Therefore $\zero \leq x \leq n$.
                    $x = n$ or $x < n$.
                    Then either $x = n$ or $x \leq k$.
                    Therefore $x \in \seq{\zero}{k}$ or $x = n$.
                    Follows by \cref{reals_order,natural_number_is_ordinal,ordinal_empty_or_emptyset_elem,naturals_leq_on_suc,reals_axiom_zero_in_reals,naturals_subseteq_reals,subseteq,union_intro_left,naturals_inductive_set,m_to_n_set,x_in_seq_iff,union_intro_right,singleton_intro}.
                \end{subproof}
                We show that $\seq{\zero}{k} \union \{n\} \subseteq \seq{\zero}{n}$.
                \begin{subproof}
                    It suffices to show that for all $x \in \seq{\zero}{k} \union \{n\}$ we have $x \in \seq{\zero}{n}$.
                    $k \leq n$ by \cref{naturals_subseteq_reals,suc_eq_plus_one,plus_one_order,subseteq}.
                    $k \in n$.
                    $\seq{\zero}{k} = \suc{k}$ by assumption.            
                    $n \in \naturals$.
                    $\zero \leq n$.
                    $n \leq n$.
                    We have $n \in \seq{\zero}{n}$.
                    Therefore $\seq{\zero}{n}$ is inhabited.
                    Take $x$ such that $x \in \seq{\zero}{n}$.
                    Therefore $\zero \leq x \leq n$.
                    $x = n$ or $x < n$.
                    Then either $x = n$ or $x \leq k$.
                    Therefore $x \in \seq{\zero}{k}$ or $x = n$.
                    Fix $x$.
                    \begin{byCase}
                        \caseOf{$x \in \seq{\zero}{k}$.}
                            Trivial.
                        \caseOf{$x = n$.}
                            It suffices to show that $n \in \seq{\zero}{n}$.
                    \end{byCase}
                \end{subproof}
                Trivial.
            \end{subproof}
            We have $\suc{n} = n \union \{n\}$.
    \end{byCase}

    %Assume $n$ is a natural number.
    %We show that $\seq{\zero}{\zero}$ has cardinality $1$.
    %\begin{subproof}
    %    It suffices to show that $1 = \seq{\zero}{\zero}$.
    %    Follows by set extensionality.
    %\end{subproof}
    %It suffices to show that if $n \neq \zero$ then $\seq{\zero}{n}$ has cardinality $\suc{n}$.
    %We show that for all $m \in \naturals$ such that $m \neq \zero$ we have $\seq{\zero}{m}$ has cardinality $\suc{m}$.
    %\begin{subproof}
    %    Fix $m \in \naturals$.
    %    Take $k$ such that $k \in \naturals$ and $\suc{k} = m$.
    %    Then $k \in m$.
    %\end{subproof}
    
    
    %For all $n \in \naturals$ we have either $n = \zero$ or there exist $m \in \naturals$ such that $n = \suc{m}$.
    %For all $n \in \naturals$ we have either $n = \zero$ or $\zero \in n$.
    %We show that if $\seq{\zero}{n}$ has cardinality $\suc{n}$ then $\seq{\zero}{\suc{n}}$ has cardinality $\suc{\suc{n}}$.
    %\begin{subproof}
    %    Omitted.
    %\end{subproof}
\end{proof}

\begin{proposition}\label{seq_zero_to_n_isomorph_to_suc_n}
    For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$.
\end{proposition}

\begin{proposition}\label{bijection_naturals_order}
    For all $M \subseteq \naturals$ such that $M$ is inhabited we have there exist $f,k$ such that $f$ is a bijection from $\seq{\zero}{k}$ to $M$ and $M$ has cardinality $\suc{k}$ and for all $n,m \in \seq{\zero}{k}$ such that $n < m$ we have $f(n) < f(m)$.
\end{proposition}
\begin{proof}
    Omitted.
\end{proof}

\begin{lemma}\label{naturals_suc_injective}
    Suppose $n,m \in \naturals$.
    $n = m$ iff $\suc{n} = \suc{m}$.
\end{lemma}

\begin{lemma}\label{naturals_rless_implies_not_eq}
    Suppose $n,m \in \naturals$.
    Suppose $n < m$.
    Then $n \neq m$.
\end{lemma}

\begin{lemma}\label{cardinality_of_singleton}
    For all $x$ such that $x \neq \emptyset$ we have $\{x\}$ has cardinality $1$.
\end{lemma}
\begin{proof}
    Omitted.
    %Fix $x$.
    %Suppose $x \neq \emptyset$.
    %Let $X = \{x\}$.
    %$\seq{\zero}{\zero}=1$.
    %$\seq{\zero}{\zero}$ has cardinality $1$.
    %$X \setminus \{x\} = \emptyset$.
    %$1 = \{\emptyset\}$.
    %Let $F = \{(x,\emptyset)\}$.
    %$F$ is a relation.
    %$\dom{F} = X$.
    %$\emptyset \in \ran{F}$.
    %for all $x \in 1$ we have $x = \emptyset$.
    %$\ran{F} = 1$.
    %$F$ is injective.
    %$F \in \surj{X}{1}$.
    %$F$ is a bijection from $X$ to $1$.
\end{proof}

\begin{lemma}\label{cardinality_n_plus_1}
    For all $n \in \naturals$ we have $n+1$ has cardinality $n+1$.
\end{lemma}
\begin{proof}
    Omitted.
\end{proof}

\begin{lemma}\label{cardinality_n_m_plus}
    For all $n,m \in \naturals$ we have $n+m$ has cardinality $n+m$.
\end{lemma}
\begin{proof}
    Omitted.
\end{proof}

\begin{lemma}\label{cardinality_plus_disjoint}
    Suppose $X \inter Y = \emptyset$.
    Suppose $X$ is finite.
    Suppose $Y$ is finite.
    Suppose $X$ has cardinality $n$.
    Suppose $Y$ has cardinality $m$.
    Then $X \union Y$ has cardinality $m+n$.
\end{lemma}
\begin{proof}
    Omitted.
\end{proof}




\begin{lemma}\label{injective_functions_is_bijection_if_bijection_there_is_other_bijection_1}
    Suppose $f$ is a bijection from $X$ to $Y$.
    Suppose $g$ is a function from $X$ to $Y$.
    Suppose $g$ is injective.
    Suppose $X$ is finite and $Y$ is finite. 
    For all $n \in \naturals$ such that $Y$ has cardinality $n$ we have $g$ is a bijection from $X$ to $Y$.
\end{lemma}
\begin{proof}[Proof by \in-induction on $n$]
    Assume $n \in \naturals$.
    Suppose $Y$ has cardinality $n$.
    $X$ has cardinality $n$ by \cref{bijection_converse_is_bijection,bijection_circ,regularity,cardinality,foundation,empty_eq,notin_emptyset}.
    \begin{byCase}
        \caseOf{$n = \zero$.} 
            Follows by \cref{converse_converse_eq,injective_converse_is_function,converse_is_relation,dom_converse,id_is_function_to,id_ran,ran_circ_exact,circ,ran_converse,emptyset_is_function_on_emptyset,bijective_converse_are_funs,relext,function_member_elim,bijection_is_function,cardinality,bijections_dom,in_irrefl,codom_of_emptyset_can_be_anything,converse_emptyset,funs_elim,neq_witness,id}.
        \caseOf{$n \neq \zero$.}
            %Take $n' \in n$ such that $n = \suc{n'}$.
            %$n' \in \naturals$.
            %$n' + 1 = n$.
            %Take $y$ such that $y \in Y$ by \cref{funs_type_apply,apply,bijections_to_funs,cardinality,foundation}. 
            %Let $Y' = Y \setminus \{y\}$.
            %$Y' \subseteq Y$.
            %$Y'$ is finite.
            %There exist $m \in \naturals$ such that $Y'$ has cardinality $m$.
            %Take $m \in \naturals$ such that $Y'$ has cardinality $m$.
            %Then $Y'$ has cardinality $n'$.
            %Let $x' = \apply{\converse{f}}{y'}$. 
            %$x' \in X$.
            %Let $X' = X \setminus \{x'\}$.
            %$X' \subseteq X$.
            %$X'$ is finite.
            %There exist $m' \in \naturals$ such that $X'$ has cardinality $m'$.
            %Take $m' \in \naturals$ such that $X''$ has cardinality $m'$.
            %Then $X'$ has cardinality $n'$.
            %Let $f'(z)=f(z)$ for $z \in X'$.
            %$\dom{f'} = X'$.
            %$\ran{f'} = Y'$.
            %$f'$ is a bijection from $X'$ to $Y'$.
            %Let $g'(z) = g(z)$ for $z \in X'$.
            %Then $g'$ is injective.
            %Then $g'$ is a bijection from $X'$ to $Y'$ by \cref{rels,id_elem_rels,times_empty_right,powerset_emptyset,double_complement_union,unions_cons,union_eq_cons,union_as_unions,unions_pow,cons_absorb,setminus_self,bijections_dom,ran_converse,id_apply,apply,unions_emptyset,img_emptyset,zero_is_empty}.
            %Define $G : X \to Y$ such that $G(z)=
            %\begin{cases}
            %    g'(z) & \text{if} z \in X' \\
            %    y' & \text{if} z = x'
            %\end{cases}$
            %$G = g$.
            %Follows by \cref{double_relative_complement,fun_to_surj,bijections,funs_surj_iff,bijections_to_funs,neq_witness,surj,funs_elim,setminus_self,cons_subseteq_iff,cardinality,ordinal_empty_or_emptyset_elem,naturals_inductive_set,natural_number_is_ordinal_for_all,foundation,inter_eq_left_implies_subseteq,inter_emptyset,cons_subseteq_intro,emptyset_subseteq}.
            Omitted.
    \end{byCase}
    %$\converse{f}$ is a bijection from $Y$ to $X$.
    %Let $h = g \circ \converse{f}$.
    %It suffices to show that $\ran{g} = Y$ by \cref{fun_to_surj,dom_converse,bijections}.
    %It suffices to show that for all $y \in Y$ we have there exist $x \in X$ such that $g(x)=y$ by \cref{funs_ran,subseteq_antisymmetric,fun_ran_iff,apply,funs_elim,ran_converse,subseteq}.
%
    %Fix $y \in Y$.
    %Take $x \in X$ such that $\apply{\converse{f}}{y} = x$.

\end{proof}

\begin{lemma}\label{injective_functions_is_bijection_if_bijection_there_is_other_bijection}
    Suppose $f$ is a bijection from $X$ to $Y$.
    Suppose $g$ is a function from $X$ to $Y$.
    Suppose $g$ is injective.
    Suppose $Y$ is finite. 
    Then $g$ is a bijection from $X$ to $Y$.
\end{lemma}
\begin{proof}
    There exist $n \in \naturals$ such that $Y$ has cardinality $n$ by \cref{cardinality,injective_functions_is_bijection_if_bijection_there_is_other_bijection_1,finite}.
    Follows by \cref{injective_functions_is_bijection_if_bijection_there_is_other_bijection_1,cardinality,equinum_tran,equinum_sym,equinum,finite}.
\end{proof}



\begin{lemma}\label{naturals_bijection_implies_eq}
    Suppose $n,m \in \naturals$.
    Suppose $f$ is a bijection from $n$ to $m$.
    Then $n = m$.
\end{lemma}
\begin{proof}
    $n$ is finite.
    $m$ is finite.
    Suppose not.
    Then $n < m$ or $m < n$.
    \begin{byCase}
        \caseOf{$n < m$.}
            Then $n \in m$.
            There exist $x \in m$ such that $x \notin n$.
            $\identity{n}$ is a function from $n$ to $m$.
            $\identity{n}$ is injective.
            $\apply{\identity{n}}{n} = n$ by \cref{id_ran,ran_of_surj,bijections,injective_functions_is_bijection_if_bijection_there_is_other_bijection}.
            Follows by \cref{inhabited,regularity,function_apply_default,apply,id_dom,in_irrefl,function_member_elim,bijections_dom,zero_is_empty,bijection_is_function,foundation,bijections,ran_of_surj,dom_converse,converse_emptyset,dom_emptyset}.
        \caseOf{$m < n$.}
            Then $m \in n$.
            There exist $x \in n$ such that $x \notin m$.
            $\converse{f}$ is a bijection from $m$ to $n$.
            $\identity{m}$ is a function from $m$ to $n$.
            $\identity{m}$ is injective.
            $\apply{\identity{m}}{m} = m$ by \cref{id_ran,ran_of_surj,bijections,injective_functions_is_bijection_if_bijection_there_is_other_bijection}.
            Follows by \cref{inhabited,regularity,function_apply_default,apply,id_dom,in_irrefl,function_member_elim,bijections_dom,zero_is_empty,bijection_is_function,foundation,bijections,ran_of_surj,dom_converse,converse_emptyset,dom_emptyset}.
    \end{byCase}
\end{proof}

\begin{lemma}\label{naturals_eq_iff_bijection}
    Suppose $n,m \in \naturals$.
    $n = m$ iff there exist $f$ such that $f$ is a bijection from $n$ to $m$.
\end{lemma}
\begin{proof}
    We show that if $n = m$ then there exist $f$ such that $f$ is a bijection from $n$ to $m$.
    \begin{subproof}
        Trivial.
    \end{subproof}
    We show that for all $k \in \naturals$ we have if there exist $f$ such that $f$ is a bijection from $k$ to $m$ then $k = m$.
    \begin{subproof}%[Proof by \in-induction on $k$]
        %Assume $k \in \naturals$.
        %\begin{byCase}
        %    \caseOf{$k = \zero$.} 
        %        Trivial.
        %    \caseOf{$k \neq \zero$.}
        %        \begin{byCase}
        %            \caseOf{$m = \zero$.}
        %                Trivial.
        %            \caseOf{$m \neq \zero$.}
        %                Take $k' \in \naturals$ such that $\suc{k'} = k$.
        %                Then $k' \in k$.
        %                Take $m' \in \naturals$ such that $m = \suc{m'}$.
        %                Then $m' \in m$.
        %                
        %        \end{byCase}
        %\end{byCase}
    \end{subproof}
\end{proof}

\begin{lemma}\label{seq_from_zero_suc_cardinality_eq_upper_border}
    Suppose $n,m \in \naturals$.
    Suppose $\seq{\zero}{n}$ has cardinality $\suc{m}$.
    Then $n = m$.
\end{lemma}
\begin{proof}
    We have $\seq{\zero}{n} = \suc{n}$.
    Take $f$ such that $f$ is a bijection from $\seq{\zero}{n}$ to $\suc{m}$.
    Therefore $n=m$ by \cref{suc_injective,naturals_inductive_set,cardinality,naturals_eq_iff_bijection}.
\end{proof}

\begin{lemma}\label{seq_from_zero_cardinality_eq_upper_border_set_eq}
    Suppose $n,m \in \naturals$.
    Suppose $\seq{\zero}{n}$ has cardinality $\suc{m}$.
    Then $\seq{\zero}{n} = \seq{\zero}{m}$.
\end{lemma}

\begin{proposition}\label{existence_normal_ordered_urysohn}
    Let $X$ be a urysohn space.
    Suppose $U$ is a urysohnchain of $X$.
    Suppose $\dom{U}$ is finite.
    Suppose $U$ is inhabited.
    Then there exist $V,f$ such that $V$ is a urysohnchain of $X$ and $f$ is consistent on $V$ to $U$ and $V$ is normal ordered.
\end{proposition}
\begin{proof}
    Take $n$ such that $\dom{U}$ has cardinality $n$ by \cref{ran_converse,cardinality,finite}.
    \begin{byCase}
        \caseOf{$n = \zero$.} 
            Omitted.
        \caseOf{$n \neq \zero$.}
            Take $k$ such that $k \in \naturals$ and $\suc{k}=n$. 
            We have $\dom{U} \subseteq \naturals$.
            $\dom{U}$ is inhabited by \cref{downward_closure,downward_closure_iff,rightunique,function_member_elim,inhabited,chain_of_subsets,urysohnchain,sequence}.
            $\dom{U}$ has cardinality $\suc{k}$.
            We show that there exist $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$ and for all $n',m' \in \seq{\zero}{k}$ such that $n' < m'$ we have $F(n') < F(m')$.
            \begin{subproof}
                For all $M \subseteq \naturals$ such that $M$ is inhabited we have there exist $f,k$ such that $f$ is a bijection from $\seq{\zero}{k}$ to $M$ and $M$ has cardinality $\suc{k}$ and for all $n,m \in \seq{\zero}{k}$ such that $n < m$ we have $f(n) < f(m)$.
                We have $\dom{U} \subseteq \naturals$.
                $\dom{U}$ is inhabited.
                Therefore there exist $f$ such that there exist $k'$ such that $f$ is a bijection from $\seq{\zero}{k'}$ to $\dom{U}$ and $\dom{U}$ has cardinality $\suc{k'}$ and for all $n',m' \in \seq{\zero}{k'}$ such that $n' < m'$ we have $f(n') < f(m')$.
                Take $f$ such that there exist $k'$ such that $f$ is a bijection from $\seq{\zero}{k'}$ to $\dom{U}$ and $\dom{U}$ has cardinality $\suc{k'}$ and for all $n',m' \in \seq{\zero}{k'}$ such that $n' < m'$ we have $f(n') < f(m')$.
                Take $k'$ such that $f$ is a bijection from $\seq{\zero}{k'}$ to $\dom{U}$ and $\dom{U}$ has cardinality $\suc{k'}$ and for all $n',m' \in \seq{\zero}{k'}$ such that $n' < m'$ we have $f(n') < f(m')$.
                $\seq{\zero}{k'}$ has cardinality $\suc{k}$ by \cref{omega_is_an_ordinal,suc,ordinal_transitivity,bijection_converse_is_bijection,seq_zero_to_n_eq_to_suc_n,cardinality,bijections_dom,bijection_circ}.
                $\seq{\zero}{k'} = \seq{\zero}{k}$ by \cref{omega_is_an_ordinal,seq_from_zero_cardinality_eq_upper_border_set_eq,suc_subseteq_implies_in,suc_subseteq_elim,ordinal_suc_subseteq,cardinality}.
                %We show that $\seq{\zero}{k'} = \seq{\zero}{k}$.
                %\begin{subproof}
                %    We show that $\seq{\zero}{k'} \subseteq \seq{\zero}{k}$.
                %    \begin{subproof}
                %        It suffices to show that for all $y \in \seq{\zero}{k'}$ we have $y \in \seq{\zero}{k}$.
                %        Fix $y \in \seq{\emptyset}{k'}$.
                %        Then $y \leq k'$.
                %        Therefore $y \in k'$ or $y = k'$ by \cref{omega_is_an_ordinal,suc_intro_self,ordinal_transitivity,cardinality,rless_eq_in_for_naturals,m_to_n_set}.
                %        
                %        Therefore $y \in \suc{k}$.
                %        Therefore $y \in \seq{\emptyset}{k}$.
                %    \end{subproof}
                %    We show that for all $y \in \seq{\zero}{k}$ we have $y \in \seq{\zero}{k'}$.
                %    \begin{subproof}
                %        Fix $y \in \seq{\emptyset}{k}$.
                %    \end{subproof}
                %\end{subproof}
            \end{subproof}
            Take $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$ and for all $n',m' \in \seq{\zero}{k}$ such that $n' < m'$ we have $F(n') < F(m')$.
            Let $N = \seq{\zero}{k}$.
            Let $M = \pow{X}$.
            Define $V : N \to M$ such that $V(n)=
            \begin{cases}
                \at{U}{F(n)} & \text{if} n \in N
            \end{cases}$
            $\dom{V} = \seq{\zero}{k}$.
            We show that $V$ is a urysohnchain of $X$.
            \begin{subproof}
                It suffices to show that $V$ is a chain of subsets in $X$ and for all $n,m \in \dom{V}$ such that $n < m$ we have $\closure{\at{V}{n}}{X} \subseteq \interior{\at{V}{m}}{X}$.
                We show that $V$ is a chain of subsets in $X$.
                \begin{subproof}
                    It suffices to show that $V$ is a sequence and for all $n \in \dom{V}$ we have $\at{V}{n} \subseteq \carrier[X]$ and for all $m \in \dom{V}$ such that $m > n$ we have $\at{V}{n} \subseteq \at{V}{m}$.
                    $V$ is a sequence by \cref{m_to_n_set,sequence,subseteq}.
                    It suffices to show that for all $n \in \dom{V}$ we have $\at{V}{n} \subseteq \carrier[X]$ and for all $m \in \dom{V}$ such that $m > n$ we have $\at{V}{n} \subseteq \at{V}{m}$.
                    Fix $n \in \dom{V}$.
                    Then $\at{V}{n} \subseteq \carrier[X]$ by \cref{ran_converse,seq_zero_to_n_eq_to_suc_n,in_irrefl}.
                    It suffices to show that for all $m$ such that $m \in \dom{V}$ and $n \rless m$ we have $\at{V}{n} \subseteq \at{V}{m}$.
                    Fix $m$ such that $m \in \dom{V}$ and $n \rless m$.
                    Follows by \cref{ran_converse,seq_zero_to_n_eq_to_suc_n,in_irrefl}.
                \end{subproof}
                It suffices to show that for all $n \in \dom{V}$ we have for all $m$ such that $m \in \dom{V} \land n \rless m$ we have $\closure{\at{V}{n}}{X} \subseteq \interior{\at{V}{m}}{X}$.
                Fix $n \in \dom{V}$.
                Fix $m$ such that $m \in \dom{V} \land n \rless m$.
                Follows by \cref{ran_converse,seq_zero_to_n_eq_to_suc_n,in_irrefl}.
            \end{subproof}
            We show that $F$ is consistent on $V$ to $U$.
            \begin{subproof}
                It suffices to show that $F$ is a bijection from $\dom{V}$ to $\dom{U}$ and for all $n,m \in \dom{V}$ such that $n < m$ we have $F(n) < F(m)$ by \cref{bijection_of_urysohnchains}.
                $F$ is a bijection from $\dom{V}$ to $\dom{U}$.
                It suffices to show that for all $n \in \dom{V}$ we have for all $m$ such that $m \in \dom{V}$ and $n \rless m$ we have $f(n) < f(m)$.
                Fix $n \in \dom{V}$.
                Fix $m$ such that $m \in \dom{V}$ and $n \rless m$.
                Follows by \cref{ran_converse,seq_zero_to_n_eq_to_suc_n,in_irrefl}.
            \end{subproof}
            $V$ is normal ordered.
    \end{byCase}
    
\end{proof}


\begin{definition}\label{staircase}
    $f$ is a staircase function adapted to $U$ in $X$ iff $U$ is a urysohnchain of $X$ and for all $x,n,m,k$ such that $k = \max{\dom{U}}$ and $n,m \in \dom{U}$ and $n$ follows $m$ in $\dom{U}$ and $x \in (\at{U}{m} \setminus \at{U}{n})$ we have $f(x)= \rfrac{m}{k}$.
\end{definition}

\begin{definition}\label{staircase_sequence}
    $S$ is staircase sequence of $U$ iff $S$ is a sequence and $U$ is a lifted urysohnchain of $X$ and $\dom{U} = \dom{S}$ and for all $n \in \dom{U}$ we have $\at{S}{n}$ is a staircase function adapted to $\at{U}{n}$ in $U$.
\end{definition}

\begin{definition}\label{staircase_limit_point}
    $x$ is the staircase limit of $S$ with $y$ iff $x \in \reals$ and for all $\epsilon \in \realsplus$ there exist $n_0 \in \naturals$ such that for all $n \in \naturals$ such that $n_0 \rless n$ we have $\apply{\at{S}{n}}{y} \in \epsBall{x}{\epsilon}$.
\end{definition}

\begin{definition}\label{staircase_limit_function}
    $f$ is a limit function of a staircase $S$ iff $S$ is staircase sequence of $U$ and $U$ is a lifted urysohnchain of $X$ and $\dom{f} = \carrier[X]$ and for all $x \in \dom{f}$ we have $f(x)$ is the staircase limit of $S$ with $x$ and $f$ is a function from $\carrier[X]$ to $\reals$.
\end{definition}

%\begin{definition}\label{staircase_limit_function}
%    $f$ is a limit function of staircase $S$ iff $S$ is staircase sequence of $U$ and $U$ is a lifted urysohnchain of $X$ and $\dom{f} = \carrier[X]$ and for all $x \in \dom{f}$ we have $f(x)$ is the staircase limit of $S$ with $x$ and $f$ is a function from $\carrier[X]$ to $\reals$.
%\end{definition}
%
%\begin{proposition}\label{staircase_limit_is_continuous}
%    Suppose $X$ is a urysohnspace.
%    Suppose $U$ is a lifted urysohnchain of $X$.
%    Suppose $S$ is staircase sequence of $U$.
%    Suppose $f$ is the limit function of a staircase $S$.
%    Then $f$ is continuous.
%\end{proposition}

\begin{theorem}\label{urysohnsetinbeetween}
    Let $X$ be a urysohn space.
    Suppose $A,B \in \closeds{X}$.
    Suppose $\closure{A}{X} \subseteq \interior{B}{X}$.
    Suppose $\carrier[X]$ is inhabited.
    There exist $U \subseteq \carrier[X]$ such that $U$ is closed in $X$ and $\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{B}{X}$.
\end{theorem}
\begin{proof}
    Omitted.
\end{proof}


\begin{theorem}\label{induction_on_urysohnchains}
    Let $X$ be a urysohn space.
    Suppose $U_0$ is a sequence.
    Suppose $U_0$ is a chain of subsets in $X$.
    Suppose $U_0$ is a urysohnchain of $X$.
    There exist $U$ such that $U$ is a sequence and $\dom{U} = \naturals$ and $\at{U}{\zero} = U_0$ and for all $n \in \dom{U}$ we have $\at{U}{n}$ is a urysohnchain of $X$ and $\at{U}{\suc{n}}$ is a minimal finer extention of $\at{U}{n}$ in $X$.
\end{theorem}
\begin{proof}
    %$U_0$ is a urysohnchain of $X$.
    %It suffices to show that for all $V$ such that $V$ is a urysohnchain of $X$ there exist $V'$ such that $V'$ is a urysohnchain of $X$ and $V'$ is a minimal finer extention of $V$ in $X$.
    Omitted.
\end{proof}





\begin{theorem}\label{urysohn}
    Let $X$ be a urysohn space.
    Suppose $A,B \in \closeds{X}$.
    Suppose $A \inter B$ is empty.
    Suppose $\carrier[X]$ is inhabited.
    There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ 
    and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous.
\end{theorem}
\begin{proof}
    Let $X' = \carrier[X]$.
    Let $N = \{\zero, 1\}$.
    $1 = \suc{\zero}$.
    $1 \in \naturals$ and $\zero \in \naturals$.
    $N \subseteq \naturals$.
    Let $A' = (X' \setminus B)$.
    $B \subseteq X'$ by \cref{powerset_elim,closeds}.
    $A \subseteq X'$.
    Therefore $A \subseteq A'$.
    Define $U_0: N \to \{A, A'\}$ such that $U_0(n) =
    \begin{cases}
        A  &\text{if} n = \zero \\
        A' &\text{if} n = 1
    \end{cases}$
    $U_0$ is a function.
    $\dom{U_0} = N$.
    $\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}. 
    $U_0$ is a sequence.
    We have $1, \zero \in N$.
    We show that $U_0$ is a chain of subsets in $X$.
    \begin{subproof}
        We have $\dom{U_0} \subseteq \naturals$.
        We have for all $n \in \dom{U_0}$ we have $\at{U_0}{n} \subseteq \carrier[X]$ by \cref{topological_prebasis_iff_covering_family,union_as_unions,union_absorb_subseteq_left,subset_transitive,setminus_subseteq}.
        We have $\dom{U_0} = \{\zero, 1\}$.

        It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $m > n$ we have $\at{U_0}{n} \subseteq \at{U_0}{m}$.

        Fix $n \in \dom{U_0}$.
        Fix $m \in \dom{U_0}$.

        \begin{byCase}
            \caseOf{$n \neq \zero$.} 
                Trivial.
            \caseOf{$n = \zero$.} 
                \begin{byCase}
                    \caseOf{$m = \zero$.} 
                        Trivial.
                    \caseOf{$m \neq \zero$.}
                        We have $A \subseteq A'$.
                        We have $\at{U_0}{\zero} = A$ by assumption.
                        We have $\at{U_0}{1}= A'$ by assumption.
                        Follows by \cref{powerset_elim,emptyset_subseteq,union_as_unions,union_absorb_subseteq_left,subseteq_pow_unions,ran_converse,subseteq,subseteq_antisymmetric,suc_subseteq_intro,apply,powerset_emptyset,emptyset_is_ordinal,notin_emptyset,ordinal_elem_connex,omega_is_an_ordinal,prec_is_ordinal}.
                \end{byCase}
        \end{byCase}
    \end{subproof}

    We show that $U_0$ is a urysohnchain of $X$.
    \begin{subproof}
        It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $n < m$ we have $\closure{\at{U_0}{n}}{X} \subseteq \interior{\at{U_0}{m}}{X}$.
        Fix $n \in \dom{U_0}$.
        Fix $m \in \dom{U_0}$.
        \begin{byCase}
            \caseOf{$n \neq \zero$.} 
                Follows by \cref{ran_converse,upair_iff,one_in_reals,order_reals_lemma0,reals_axiom_zero_in_reals,reals_one_bigger_zero,reals_order}.
            \caseOf{$n = \zero$.} 
                \begin{byCase}
                    \caseOf{$m = \zero$.} 
                        Trivial.
                    \caseOf{$m \neq \zero$.}
                        Follows by \cref{setminus_emptyset,setdifference_eq_intersection_with_complement,setminus_self,interior_carrier,complement_interior_eq_closure_complement,subseteq_refl,closure_interior_frontier_is_in_carrier,emptyset_subseteq,closure_is_minimal_closed_set,inter_lower_right,inter_lower_left,subseteq_transitive,interior_of_open,is_closed_in,closeds,union_absorb_subseteq_right,ordinal_suc_subseteq,ordinal_empty_or_emptyset_elem,union_absorb_subseteq_left,union_emptyset,topological_prebasis_iff_covering_family,inhabited,notin_emptyset,subseteq,union_as_unions,natural_number_is_ordinal}.
                \end{byCase}
        \end{byCase}
    \end{subproof}
    %We are done with the first step, now we want to prove that we have U a sequence of these chain with U_0 the first chain.

    We show that there exist $U$ such that $U$ is a sequence and $\dom{U} = \naturals$ and $\at{U}{\zero} = U_0$ and for all $n \in \dom{U}$ we have $\at{U}{n}$ is a urysohnchain of $X$ and $\at{U}{\suc{n}}$ is a minimal finer extention of $\at{U}{n}$ in $X$.
    \begin{subproof}
        Follows by \cref{chain_of_subsets,urysohnchain,induction_on_urysohnchains}.
    \end{subproof}
    Take $U$ such that $U$ is a lifted urysohnchain of $X$ and $\at{U}{\zero} = U_0$.

    We show that there exist $S$ such that $S$ is staircase sequence of $U$.
    \begin{subproof}
        Omitted.
    \end{subproof}
    Take $S$ such that $S$ is staircase sequence of $U$.

    %For all $x \in \carrier[X]$ we have there exist $r,R$ such that $r \in \reals$ and $R$ is a sequence of reals and $\dom{R} = \naturals$ and $R$ converge to $r$ and for all $n \in \naturals$ we have $\at{R}{n} = \apply{\at{S}{n}}{x}$.
%
    %We show that for all $x \in \carrier[X]$ there exists $r \in \intervalclosed{a}{b}$ such that for .
%

    
\end{proof}

\begin{theorem}\label{safe}
    Contradiction.     
\end{theorem}





%
%Ideen:
%Eine folge ist ein Funktion mit domain \subseteq Natürlichenzahlen. als predicat
%
%zulässig und verfeinerung von ketten als predicat definieren. 
%
%limits und punkt konvergenz als prädikat.
%
%
%Vor dem Beweis vor dem eigentlichen Beweis.
%die abgeleiteten Funktionen
%
%\derivedstiarcasefunction on A
%
%abbreviation: \at{f}{n} = f_{n}
%
%
%TODO:
%Reals ist ein topologischer Raum
%