1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
\import{topology/topological-space.tex}
\import{topology/separation.tex}
\import{topology/continuous.tex}
\import{topology/basis.tex}
\import{numbers.tex}
\import{function.tex}
\import{set.tex}
\import{cardinal.tex}
\import{relation.tex}
\import{relation/uniqueness.tex}
\import{set/cons.tex}
\import{set/powerset.tex}
\import{set/fixpoint.tex}
\import{set/product.tex}
\section{Urysohns Lemma}
\begin{definition}\label{minimum}
$\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
\end{definition}
\begin{definition}\label{maximum}
$\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
\end{definition}
\begin{definition}\label{intervalclosed}
$\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
\end{definition}
\begin{definition}\label{intervalopen}
$\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$.
\end{definition}
\begin{definition}\label{one_to_n_set}
$\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
\end{definition}
\begin{definition}\label{sequence}
$X$ is a sequence iff $X$ is a function and $\dom{X} \subseteq \naturals$.
\end{definition}
\begin{abbreviation}\label{urysohnspace}
$X$ is a urysohn space iff
$X$ is a topological space and
for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$
we have there exist $A',B' \in \opens[X]$
such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.
\end{abbreviation}
\begin{abbreviation}\label{at}
$\at{f}{n} = f(n)$.
\end{abbreviation}
\begin{definition}\label{chain_of_subsets}
$X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$ and for all $m \in \dom{X}$ such that $m > n$ we have $\at{X}{n} \subseteq \at{X}{m}$.
\end{definition}
\begin{definition}\label{urysohnchain}%<-- zulässig
$X$ is a urysohnchain of $Y$ iff $X$ is a chain of subsets in $Y$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $\closure{\at{X}{n}}{Y} \subseteq \interior{\at{X}{m}}{Y}$.
\end{definition}
\begin{definition}\label{urysohn_finer_set}
$A$ is finer between $X$ to $Y$ in $U$ iff $\closure{X}{U} \subseteq \interior{A}{U}$ and $\closure{A}{U} \subseteq \interior{Y}{U}$.
\end{definition}
\begin{definition}\label{finer} %<-- verfeinerung
$Y$ is finer then $X$ in $U$ iff for all $n \in \dom{X}$ we have $\at{X}{n} \in \ran{Y}$ and for all $m \in \dom{X}$ such that $n < m$ we have there exist $k \in \dom{Y}$ such that $\at{Y}{k}$ is finer between $\at{X}{n}$ to $\at{X}{m}$ in $U$.
\end{definition}
\begin{definition}\label{follower_index}
$y$ follows $x$ in $I$ iff $x < y$ and $x,y \in I$ and for all $i \in I$ such that $x < i$ we have $y \leq i$.
\end{definition}
\begin{definition}\label{finer_smallest_step}
$Y$ is a minimal finer extention of $X$ in $U$ iff $Y$ is finer then $X$ in $U$ and for all $x_1,x_2 \in \dom{X}$ such that $x_1$ follows $x_2$ in $\dom{X}$ we have there exist $y \in \dom{Y}$ such that $y$ follows $x_1$ in $\dom{X}$ and $x_2$ follows $y$ in $\dom{X}$.
\end{definition}
\begin{definition}\label{sequence_of_reals}
$X$ is a sequence of reals iff $\ran{X} \subseteq \reals$.
\end{definition}
\begin{axiom}\label{abs_behavior1}
If $x \geq \zero$ then $\abs{x} = x$.
\end{axiom}
\begin{axiom}\label{abs_behavior2}
If $x < \zero$ then $\abs{x} = \neg{x}$.
\end{axiom}
\begin{definition}\label{realsminus}
$\realsminus = \{r \in \reals \mid r < \zero\}$.
\end{definition}
\begin{definition}\label{realsplus}
$\realsplus = \reals \setminus \realsminus$.
\end{definition}
\begin{definition}\label{epsilon_ball}
$\epsBall{x}{\epsilon} = \intervalopen{x-\epsilon}{x+\epsilon}$.
\end{definition}
\begin{definition}\label{pointwise_convergence}
$X$ converge to $x$ iff for all $\epsilon \in \realsplus$ there exist $N \in \dom{X}$ such that for all $n \in \dom{X}$ such that $n > N$ we have $\at{X}{n} \in \epsBall{x}{\epsilon}$.
\end{definition}
\begin{proposition}\label{iff_sequence}
Suppose $X$ is a function.
Suppose $\dom{X} \subseteq \naturals$.
Then $X$ is a sequence.
\end{proposition}
\begin{theorem}\label{urysohnsetinbeetween}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
Suppose $\closure{A}{X} \subseteq \interior{B}{X}$.
Suppose $\carrier[X]$ is inhabited.
There exist $U \subseteq \carrier[X]$ such that $U$ is closed in $X$ and $\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{B}{X}$.
\end{theorem}
\begin{proof}
Omitted.
\end{proof}
\begin{theorem}\label{urysohn}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
Suppose $A \inter B$ is empty.
Suppose $\carrier[X]$ is inhabited.
There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous.
\end{theorem}
\begin{proof}
Let $X' = \carrier[X]$.
Let $N = \{\zero, 1\}$.
$1 = \suc{\zero}$.
$1 \in \naturals$ and $\zero \in \naturals$.
$N \subseteq \naturals$.
Let $A' = (X' \setminus B)$.
$B \subseteq X'$ by \cref{powerset_elim,closeds}.
$A \subseteq X'$.
Therefore $A \subseteq A'$.
Define $U_0: N \to \{A, A'\}$ such that $U_0(n) =$
\begin{cases}
&A &\text{if} n = \zero \\
&A' &\text{if} n = 1
\end{cases}
$U_0$ is a function.
$\dom{U_0} = N$.
$\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}.
$U_0$ is a sequence.
We have $1, \zero \in N$.
We show that $U_0$ is a chain of subsets in $X$.
\begin{subproof}
We have $\dom{U_0} \subseteq \naturals$.
We have for all $n \in \dom{U_0}$ we have $\at{U_0}{n} \subseteq \carrier[X]$ by \cref{topological_prebasis_iff_covering_family,union_as_unions,union_absorb_subseteq_left,subset_transitive,setminus_subseteq}.
We have $\dom{U_0} = \{\zero, 1\}$.
It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $m > n$ we have $\at{U_0}{n} \subseteq \at{U_0}{m}$.
Fix $n \in \dom{U_0}$.
Fix $m \in \dom{U_0}$.
\begin{byCase}
\caseOf{$n \neq \zero$.}
Trivial.
\caseOf{$n = \zero$.}
\begin{byCase}
\caseOf{$m = \zero$.}
Trivial.
\caseOf{$m \neq \zero$.}
We have $A \subseteq A'$.
We have $\at{U_0}{\zero} = A$ by assumption.
We have $\at{U_0}{1}= A'$ by assumption.
Follows by \cref{powerset_elim,emptyset_subseteq,union_as_unions,union_absorb_subseteq_left,subseteq_pow_unions,ran_converse,subseteq,subseteq_antisymmetric,suc_subseteq_intro,apply,powerset_emptyset,emptyset_is_ordinal,notin_emptyset,ordinal_elem_connex,omega_is_an_ordinal,prec_is_ordinal}.
\end{byCase}
\end{byCase}
\end{subproof}
We show that $U_0$ is a urysohnchain of $X$.
\begin{subproof}
It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $n < m$ we have $\closure{\at{U_0}{n}}{X} \subseteq \interior{\at{U_0}{m}}{X}$.
Fix $n \in \dom{U_0}$.
Fix $m \in \dom{U_0}$.
\begin{byCase}
\caseOf{$n \neq \zero$.}
Follows by \cref{ran_converse,upair_iff,one_in_reals,order_reals_lemma0,reals_axiom_zero_in_reals,reals_one_bigger_zero,reals_order}.
\caseOf{$n = \zero$.}
\begin{byCase}
\caseOf{$m = \zero$.}
Trivial.
\caseOf{$m \neq \zero$.}
Follows by \cref{setminus_emptyset,setdifference_eq_intersection_with_complement,setminus_self,interior_carrier,complement_interior_eq_closure_complement,subseteq_refl,closure_interior_frontier_is_in_carrier,emptyset_subseteq,closure_is_minimal_closed_set,inter_lower_right,inter_lower_left,subseteq_transitive,interior_of_open,is_closed_in,closeds,union_absorb_subseteq_right,ordinal_suc_subseteq,ordinal_empty_or_emptyset_elem,union_absorb_subseteq_left,union_emptyset,topological_prebasis_iff_covering_family,inhabited,notin_emptyset,subseteq,union_as_unions,natural_number_is_ordinal}.
\end{byCase}
\end{byCase}
\end{subproof}
%We are done with the first step, now we want to prove that we have U a sequence of these chain with U_0 the first chain.
We show that there exist $U$ such that $U$ is a sequence and $\dom{U} = \naturals$ and $\at{U}{\zero} = U_0$ and for all $n \in \dom{U}$ we have $\at{U}{n}$ is a urysohnchain of $X$ and $\at{U}{\suc{n}}$ is a minimal finer extention of $\at{U}{n}$ in $X$.
\begin{subproof}
$U_0$ is a urysohnchain of $X$.
We show that if $V$ is a urysohnchain of $X$ then there exist $V'$ such that $V'$ is a urysohnchain of $X$ and $V'$ is a minimal finer extention of $V$ in $X$.
\begin{subproof}
Omitted.
\end{subproof}
Let $N' = \naturals$.
Let $P = \{C \mid C \in \pow{\pow{X'}} \mid \text{$C$ is a urysohnchain of $X$}\}$.
Define $U : N' \to P$ such that $U(n) =$
\begin{cases}
&U_0 &\text{if} n = \zero \\
&V & \text{if} \text{ $n = \suc{m}$ and $V$ is a minimal finer extention of $U(m)$ in $X$}.
\end{cases}
\end{subproof}
\end{proof}
\begin{theorem}\label{safe}
Contradiction.
\end{theorem}
%
%Ideen:
%Eine folge ist ein Funktion mit domain \subseteq Natürlichenzahlen. als predicat
%
%zulässig und verfeinerung von ketten als predicat definieren.
%
%limits und punkt konvergenz als prädikat.
%
%
%Vor dem Beweis vor dem eigentlichen Beweis.
%die abgeleiteten Funktionen
%
%\derivedstiarcasefunction on A
%
%abbreviation: \at{f}{n} = f_{n}
%
%
%TODO:
%Reals ist ein topologischer Raum
%
|