summaryrefslogtreecommitdiff
path: root/megalodon/scraps.tex
blob: f79a6300f11fbf2739528328ee6984098ff18cfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
\begin{axiom}\label{trivial}
    For all $x$ we have $x = x$.
\end{axiom}

% Axiom EmptyAx : ~exists x:set, x :e Empty.
\begin{axiom}\label{empty_axiom}
    There exists no set $x$ such that $x\in\emptyset$.
\end{axiom}

% UnionEq : forall X x, x :e Union X <-> exists Y, x :e Y /\ Y :e X.
\begin{axiom}\label{union_eq}
    For all $x, X$ we have $x\in\unions{X}$ iff there exists $Y$ such that $x\in Y\in X$.
\end{axiom}

\begin{theorem}\label{eq_refl}
    For all $x$ we have $x=x$.
\end{theorem}