blob: f79a6300f11fbf2739528328ee6984098ff18cfe (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
\begin{axiom}\label{trivial}
For all $x$ we have $x = x$.
\end{axiom}
% Axiom EmptyAx : ~exists x:set, x :e Empty.
\begin{axiom}\label{empty_axiom}
There exists no set $x$ such that $x\in\emptyset$.
\end{axiom}
% UnionEq : forall X x, x :e Union X <-> exists Y, x :e Y /\ Y :e X.
\begin{axiom}\label{union_eq}
For all $x, X$ we have $x\in\unions{X}$ iff there exists $Y$ such that $x\in Y\in X$.
\end{axiom}
\begin{theorem}\label{eq_refl}
For all $x$ we have $x=x$.
\end{theorem}
|