blob: e3a65f2bd565e2293c45ed6c4c0693d8d0618e89 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
module Encoding where
import Base
import Syntax.Internal
import Syntax.Lexicon
import Tptp.UnsortedFirstOrder qualified as Tptp
import Data.Text qualified as Text
import Bound
import Bound.Scope
encodeTask :: Lexicon -> Task -> Tptp.Task
encodeTask l (Task _isByContradiction hypos m conjecture) = Tptp.Task (conjecture' : hypos')
where
conjecture' = encodeConjecture l m conjecture
hypos' = encodeHypos l hypos
encodeConjecture :: Lexicon -> Marker -> Formula -> Tptp.AnnotatedFormula
encodeConjecture l (Marker str) f = Tptp.AnnotatedFormula (Tptp.NameAtomicWord (Tptp.AtomicWord str)) Tptp.Conjecture (encodeExpr l f)
-- NOTE: E's SInE will only filter out axioms and leave hypotheses fixed.
encodeHypos :: Lexicon -> [(Marker, Formula)] -> [Tptp.AnnotatedFormula]
encodeHypos l phis = [makeHypo m (encodeExpr l phi) | (m, phi) <- phis]
where
makeHypo :: Marker -> Tptp.Expr -> Tptp.AnnotatedFormula
makeHypo (Marker str) f' = Tptp.AnnotatedFormula (Tptp.NameAtomicWord (Tptp.AtomicWord str)) Tptp.Axiom f'
encodeWithRole :: Tptp.Role -> Lexicon -> [(Marker, Formula)] -> [Tptp.AnnotatedFormula]
encodeWithRole role l phis = [makeHypo m (encodeExpr l phi) | (m, phi) <- phis]
where
makeHypo :: Marker -> Tptp.Expr -> Tptp.AnnotatedFormula
makeHypo (Marker str) f' = Tptp.AnnotatedFormula (Tptp.NameAtomicWord (Tptp.AtomicWord str)) role f'
encodeExpr :: Lexicon -> Expr -> Tptp.Expr
encodeExpr l = go . (fmap encodeFreeVar)
where
go :: ExprOf Tptp.Expr -> Tptp.Expr
go = \case
e1 `Equals` e2 ->
Tptp.Eq (go e1) (go e2)
e1 `NotEquals` e2 ->
Tptp.NotEq (go e1) (go e2)
Atomic p es ->
let p' = encodePredicate l p
es' = go <$> toList es
in Tptp.Apply p' es'
PropositionalConstant IsBottom ->
Tptp.Bottom
PropositionalConstant IsTop ->
Tptp.Top
Not f ->
Tptp.Not (go f)
Connected Conjunction f1 f2 ->
Tptp.Conn Tptp.And (go f1) (go f2)
Connected Disjunction f1 f2 ->
Tptp.Conn Tptp.Or (go f1) (go f2)
Connected Implication f1 f2 ->
Tptp.Conn Tptp.Imply (go f1) (go f2)
Connected Equivalence f1 f2 ->
Tptp.Conn Tptp.Iff (go f1) (go f2)
Connected NegatedDisjunction f1 f2 ->
Tptp.Not (Tptp.Conn Tptp.Or (go f1) (go f2))
Connected ExclusiveOr f1 f2 ->
Tptp.Not (Tptp.Conn Tptp.Iff (go f1) (go f2))
Quantified quant scope ->
let phi = instantiate instantiator scope
xs = [encodeBoundVar x | x <- nubOrd (bindings scope)]
phi' = go phi
quant' = encodeQuant quant
in case xs of
[] -> phi'
y:ys -> Tptp.Quantified quant' (y:|ys) phi'
TermVar v ->
v
Apply e es -> case e of
TermVar (Tptp.Const x) -> Tptp.Apply x (go <$> toList es)
_ -> error ("encodeExpr: complex term as head of applicaition: " <> show e)
TermSymbol symb es ->
Tptp.Apply (encodeSymbol l symb) (go <$> es)
e@ReplaceFun{} ->
error ("Precondition failed in encodeTerm, cannot encode terms with comprehensions directly: " <> show e)
e@ReplacePred{} ->
error ("Precondition failed in encodeTerm, cannot encode terms with comprehensions directly: " <> show e)
e@TermSep{} ->
error ("Precondition failed in encodeTerm, cannot encode terms with comprehensions directly: " <> show e)
e@Iota{} ->
error ("Precondition failed in encodeTerm, cannot encode terms with descriptors directly: " <> show e)
TermSymbolStruct symb e -> case e of
Just e' ->
Tptp.Apply (Tptp.AtomicWord ("s__" <> (unStructSymbol symb))) [go e']
Nothing ->
error ("encodeExpr.go (precondition failed): unannotated struct symbol" <> show symb)
_ -> error "encodeExpr.go: missing case"
instantiator :: VarSymbol -> ExprOf Tptp.Expr
instantiator bv = TermVar (Tptp.Var (encodeBoundVar bv))
encodeQuant :: Quantifier -> Tptp.Quantifier
encodeQuant Universally = Tptp.Forall
encodeQuant Existentially = Tptp.Exists
encodeSymbol :: Lexicon -> Symbol -> Tptp.AtomicWord
encodeSymbol l symb = atomicWordFromRightMarker case symb of
SymbolMixfix op ->
lookupOp op (lexiconMixfix l)
SymbolFun fun ->
lookupLexicalItem fun (lexiconFuns l)
SymbolInteger n ->
Right (Marker (Text.pack (show n)))
SymbolPredicate _ ->
error "IMPOSSIBLE: predicates should already be translated"
encodePredicate :: Lexicon -> Predicate -> Tptp.AtomicWord
encodePredicate l p = atomicWordFromRightMarker case p of
PredicateAdj adj ->
lookupLexicalItem adj (lexiconAdjs l)
PredicateVerb verb ->
lookupLexicalItem verb (lexiconVerbs l)
PredicateNoun noun ->
lookupLexicalItem noun (lexiconNouns l)
PredicateRelation rel ->
lookupLexicalItem rel (lexiconRelationSymbols l)
PredicateNounStruct noun ->
lookupLexicalItem noun (lexiconStructNouns l)
PredicateSymbol symb ->
Right (Marker symb)
atomicWordFromRightMarker :: Either String Marker -> Tptp.AtomicWord
atomicWordFromRightMarker = \case
Right (Marker m) -> Tptp.AtomicWord m
Left a -> error ("symbol not in lexicon" <> a)
encodeFreeVar :: VarSymbol -> Tptp.Expr
encodeFreeVar fv = Tptp.Const fv'
where
fv' = Tptp.AtomicWord case fv of
NamedVar x -> Text.cons 'f' x
FreshVar n -> Text.cons 'y' (Text.pack (show n))
-- | Tptp variables must be "upper words", starting with an uppercase letter
-- and continuing with alphanumeric characters. We prefix all variables
-- with "X" to make them easy to decode.
encodeBoundVar :: VarSymbol -> Tptp.Variable
encodeBoundVar bv = Tptp.Variable $ Text.cons 'X' case bv of
NamedVar x -> x
FreshVar n -> Text.pack (show n)
|