1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
|
{-# LANGUAGE ApplicativeDo #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE TupleSections #-}
module Meaning where
import Base
import Serial
import Syntax.Abstract (Sign(..))
import Syntax.Abstract qualified as Raw
import Syntax.Internal (VarSymbol(..))
import Syntax.Internal qualified as Sem
import Syntax.LexicalPhrase (unsafeReadPhrase)
import Syntax.Lexicon
import Bound
import Bound.Scope (abstractEither)
import Control.Monad.Except
import Control.Monad.State
import Data.List qualified as List
import Data.List.NonEmpty qualified as NonEmpty
import Data.Map qualified as Map
import Data.Set qualified as Set
-- | The 'Gloss' monad. Basic elaboration, desugaring, and validation
-- computations take place in this monad, using 'ExceptT' to log
-- validation errors and 'State' to keep track of the surrounding context.
type Gloss = ExceptT GlossError (State GlossState)
-- This monad previously used 'ValidationT' for validation so that multiple
-- validation errors could be reported. Using only 'ExceptT' we fail immediately
-- on the first error. If we ever swich back to 'ValidateT' for error reporting,
-- then we should re-enable {-# OPTIONS_GHC -foptimal-applicative-do #-},
-- as 'ValidateT' can report more errors when used with applicative combinators.
-- | Errors that can be detected during glossing.
data GlossError
= GlossDefnError DefnError String
| GlossInductionError
deriving (Show, Eq, Ord)
-- | Specialization of 'traverse' to 'Gloss'.
each :: (Traversable t) => (a -> Gloss b) -> t a -> Gloss (t b)
explain `each` as = traverse explain as
infix 7 `each` -- In particular, 'each' has precedence over '(<$>)'.
-- | Wellformedness check for definitions.
-- The following conditions need to be met.
--
-- * Variables occurring in the lexical phrases on the left side must be linear,
-- i.e. each variable can only occur once.
-- * The arguments of the lexical phrases must be variables, not complex terms.
-- This is statically guaranteed by the grammar.
-- * The optional typing noun may not have any free variables.
-- * The rhs side may not have any free variables not occurring on the lhs.
-- * If a variable on the lhs does not occur on the rhs, a warning should we issued.
--
isWellformedDefn :: Sem.Defn -> Either DefnError Sem.Defn
isWellformedDefn defn = lhsLinear defn
lhsVars :: Sem.Defn -> [VarSymbol]
lhsVars = \case
Sem.DefnPredicate _ _ vs _ -> toList vs
Sem.DefnFun _ _ vs _ -> vs
Sem.DefnOp _ vs _ -> vs
lhsLinear :: Sem.Defn -> Either DefnError Sem.Defn
lhsLinear defn' = let vs = lhsVars defn' in
if nubOrd vs /= vs
then Left DefnErrorLhsNotLinear
else Right defn'
-- | Validation errors for top-level definitions.
data DefnError
= DefnWarnLhsFree
| DefnErrorLhsNotLinear
| DefnErrorLhsTypeFree
| DefnErrorRhsFree
deriving (Show, Eq, Ord)
-- | Context for 'Gloss' computations.
data GlossState = GlossState
{ varCount :: Int
-- ^ Counter for generating variables names for the output.
, lemmaCount :: Serial
-- ^ Counter for generating names for unlabelled lemmas.
, lexicon :: Lexicon
, pretypings :: Map VarSymbol Sem.Formula
-- ^ Keeps track of variable constraints. We lookup and insert constraints
-- when quantifying. Each variable maps to a predicate that the variables
-- must (implicitly) satisfy. Multiple constraints are represented as
-- a conjunction.
-- CONDITION: For convenience the keys are 'VarSymbol's, but variable constraints
-- should not be used for 'FreshVar's.
} deriving (Show, Eq)
freshLemmaId :: Gloss Serial
freshLemmaId = do
i <- gets lemmaCount
modify $ \s -> s {lemmaCount = Serial.next (lemmaCount s)}
pure i
freshVar :: Gloss VarSymbol
freshVar = do
i <- gets varCount
modify $ \s -> s {varCount = varCount s + 1}
pure $ FreshVar i
meaning :: [Raw.Block] -> Either GlossError [Sem.Block]
meaning a = evalState (runExceptT (glossBlocks a)) initialGlossState
where
initialGlossState = GlossState
{ varCount = 0
, lemmaCount = Serial.start
, lexicon = builtins
, pretypings = mempty
}
glossExpr :: Raw.Expr -> Gloss (Sem.ExprOf VarSymbol)
glossExpr = \case
Raw.ExprVar v ->
pure $ Sem.TermVar v
Raw.ExprInteger n ->
pure $ Sem.TermSymbol (Sem.SymbolInteger n) []
Raw.ExprOp f es ->
Sem.TermSymbol <$> pure (Sem.SymbolMixfix f) <*> (glossExpr `each` es)
Raw.ExprStructOp tok maybeLabel -> do
maybeLabel' <- traverse glossExpr maybeLabel
pure $ Sem.TermSymbolStruct tok maybeLabel'
Raw.ExprSep x t phi -> do
t' <- glossExpr t
phi' <- glossStmt phi
pure (Sem.TermSep x t' (abstract1 x phi'))
Raw.ExprReplacePred y x xBound stmt -> do
xBound' <- glossExpr xBound
stmt' <- glossStmt stmt
let toReplacementVar z = if
| z == x -> Just Sem.ReplacementDomVar
| z == y -> Just Sem.ReplacementRangeVar
| otherwise -> Nothing
let scope = abstract toReplacementVar stmt'
pure (Sem.ReplacePred y x xBound' scope)
Raw.ExprReplace e bounds phi -> do
e' <- glossExpr e
bounds' <- glossReplaceBound `each` bounds
let xs = fst <$> bounds'
phi'' <- case phi of
Just phi' -> glossStmt phi'
Nothing -> pure Sem.Top
let abstractBoundVars = abstract (\x -> List.find (== x) (toList xs))
pure $ Sem.ReplaceFun bounds' (abstractBoundVars e') (abstractBoundVars phi'')
where
glossReplaceBound :: (VarSymbol, Raw.Expr) -> Gloss (VarSymbol, Sem.Term)
glossReplaceBound (x, b) = (x,) <$> glossExpr b
Raw.ExprFiniteSet es ->
Sem.finiteSet <$> glossExpr `each` es
glossFormula :: Raw.Formula -> Gloss (Sem.ExprOf VarSymbol)
glossFormula = \case
Raw.FormulaChain ch ->
glossChain ch
Raw.Connected conn phi psi ->
glossConnective conn <*> glossFormula phi <*> glossFormula psi
Raw.FormulaNeg f ->
Sem.Not <$> glossFormula f
Raw.FormulaPredicate predi es ->
Sem.Atomic <$> glossPrefixPredicate predi <*> glossExpr `each` toList es
Raw.PropositionalConstant c ->
pure $ Sem.PropositionalConstant c
Raw.FormulaQuantified quantifier xs bound phi -> do
bound' <- glossBound bound
phi' <- glossFormula phi
quantify <- glossQuantifier quantifier
pure (quantify xs (bound' (toList xs)) phi')
glossChain :: Sem.Chain -> Gloss (Sem.ExprOf VarSymbol)
glossChain ch = Sem.makeConjunction <$> makeRels (conjuncts (splat ch))
where
-- | Separate each link of the chain into separate triples.
splat :: Raw.Chain -> [(NonEmpty Raw.Expr, Sign, Raw.Relation, NonEmpty Raw.Expr)]
splat = \case
Raw.ChainBase es sign rel es'
-> [(es, sign, rel, es')]
Raw.ChainCons es sign rel ch'@(Raw.ChainBase es' _ _ _)
-> (es, sign, rel, es') : splat ch'
Raw.ChainCons es sign rel ch'@(Raw.ChainCons es' _ _ _)
-> (es, sign, rel, es') : splat ch'
-- | Take each triple and combine the lhs/rhs to make all the conjuncts.
conjuncts :: [(NonEmpty Raw.Expr, Sign, Raw.Relation, NonEmpty Raw.Expr)] -> [(Sign, Raw.Relation, Raw.Expr, Raw.Expr)]
conjuncts triples = do
(e1s, sign, rel, e2s) <- triples
e1 <- toList e1s
e2 <- toList e2s
pure (sign, rel, e1, e2)
makeRels :: [(Sign, Raw.Relation, Raw.Expr, Raw.Expr)] -> Gloss [Sem.Formula]
makeRels triples = for triples makeRel
makeRel :: (Sign, Raw.Relation, Raw.Expr, Raw.Expr) -> Gloss Sem.Formula
makeRel (sign, rel, e1, e2) = do
e1' <- glossExpr e1
e2' <- glossExpr e2
case rel of
Raw.RelationSymbol tok ->
pure $ sign' $ Sem.Relation tok (e1' : [e2'])
Raw.RelationExpr e -> do
e' <- glossExpr e
pure $ sign' $ Sem.TermPair e1' e2' `Sem.IsElementOf` e'
where
sign' = case sign of
Positive -> id
Negative -> Sem.Not
glossPrefixPredicate :: Raw.PrefixPredicate -> Gloss Sem.Predicate
glossPrefixPredicate (Raw.PrefixPredicate symb _ar) = pure (Sem.PredicateSymbol symb)
glossNPNonEmpty :: Raw.NounPhrase NonEmpty -> Gloss (NonEmpty VarSymbol, Sem.Formula)
glossNPNonEmpty (Raw.NounPhrase leftAdjs noun vars rightAdjs maySuchThat) = do
-- We interpret the noun as a predicate.
noun' <- glossNoun noun
-- Now we turn the noun and all its modifiers into statements.
let typings = (\v' -> noun' (Sem.TermVar v')) <$> vars
leftAdjs' <- forEach (toList vars) <$> glossAdjL `each` leftAdjs
rightAdjs' <- forEach (toList vars) <$> glossAdjR `each` rightAdjs
suchThat <- maybeToList <$> glossStmt `each` maySuchThat
let constraints = toList typings <> leftAdjs' <> rightAdjs' <> suchThat
pure (vars, Sem.makeConjunction constraints)
-- | If needed, we introduce a fresh variable to reduce this to the case @NounPhrase NonEmpty@.
glossNPList :: Raw.NounPhrase [] -> Gloss (NonEmpty VarSymbol, Sem.Formula)
glossNPList (Raw.NounPhrase leftAdjs noun vars rightAdjs maySuchThat) = do
vars' <- case vars of
[] -> (:| []) <$> freshVar
v:vs -> pure (v :| vs)
glossNPNonEmpty $ Raw.NounPhrase leftAdjs noun vars' rightAdjs maySuchThat
-- Returns a predicate for a term (the constraints) and the optional such-that clause.
-- We treat suchThat separately since multiple terms can share the same such-that clause.
glossNPMaybe :: Raw.NounPhrase Maybe -> Gloss (Sem.Term -> Sem.Formula, Maybe Sem.Formula)
glossNPMaybe (Raw.NounPhrase leftAdjs noun mayVar rightAdjs maySuchThat) = do
case mayVar of
Nothing -> do
glossNP leftAdjs noun rightAdjs maySuchThat
Just v' -> do
-- Next we desugar all the modifiers into statements.
leftAdjs' <- apply v' <$> glossAdjL `each` leftAdjs
rightAdjs' <- apply v' <$> glossAdjR `each` rightAdjs
maySuchThat' <- glossStmt `each` maySuchThat
let constraints = leftAdjs' <> rightAdjs'
-- Finally we translate the noun itself.
noun' <- glossNoun noun
pure case constraints of
[] -> (\t -> noun' t, maySuchThat')
_ -> (\t -> noun' t `Sem.And` Sem.makeConjunction (eq t v' : constraints), maySuchThat')
where
eq t v = t `Sem.Equals` Sem.TermVar v
apply :: VarSymbol -> [Sem.Term -> Sem.Formula] -> [Sem.Formula]
apply v stmts = [stmt (Sem.TermVar v) | stmt <- stmts]
-- | Gloss a noun without a variable name.
-- Returns a predicate for a term (the constraints) and the optional such-that clause.
-- We treat suchThat separately since multiple terms can share the same such-that clause.
glossNP :: [Raw.AdjL] -> Raw.Noun -> [Raw.AdjR] -> Maybe Raw.Stmt -> Gloss (Sem.Term -> Sem.ExprOf VarSymbol, Maybe Sem.Formula)
glossNP leftAdjs noun rightAdjs maySuchThat = do
noun' <- glossNoun noun
leftAdjs' <- glossAdjL `each` leftAdjs
rightAdjs' <- glossAdjR `each` rightAdjs
maySuchThat' <- glossStmt `each` maySuchThat
let constraints = [noun'] <> leftAdjs' <> rightAdjs'
pure (\t -> Sem.makeConjunction (flap constraints t), maySuchThat')
-- | If we have a plural noun with multiple variables, then we need to desugar
-- adjectives to apply to each individual variable.
forEach :: Applicative t => t VarSymbol -> t (Sem.Term -> a) -> t a
forEach vs'' stmts = do
v <- vs''
stmt <- stmts
pure $ stmt (Sem.TermVar v)
glossAdjL :: Raw.AdjL -> Gloss (Sem.Term -> Sem.Formula)
glossAdjL (Raw.AdjL pat es) = do
(es', quantifies) <- unzip <$> glossTerm `each` es
let quantify = compose $ reverse quantifies
pure $ \t -> quantify $ Sem.FormulaAdj t pat es'
-- | Since we need to be able to remove negation in verb phrases,
-- we need to have 'Sem.Stmt' as the target. We do not yet have
-- the term representing the subject, hence the parameter 'Sem.Expr'.
glossAdjR :: Raw.AdjR -> Gloss (Sem.Term -> Sem.Formula)
glossAdjR = \case
Raw.AdjR pat [e] | pat == unsafeReadPhrase "equal to ?" -> do
(e', quantify) <- glossTerm e
pure $ \t -> quantify $ Sem.Equals t e'
Raw.AdjR pat es -> do
(es', quantifies) <- unzip <$> glossTerm `each` es
let quantify = compose $ reverse quantifies
pure $ \t -> quantify $ Sem.FormulaAdj t pat es'
Raw.AttrRThat vp -> glossVP vp
glossAdj :: Raw.AdjOf Raw.Term -> Gloss (Sem.ExprOf VarSymbol -> Sem.Formula)
glossAdj adj = case adj of
Raw.Adj pat [e] | pat == unsafeReadPhrase "equal to ?" -> do
(e', quantify) <- glossTerm e
pure $ \t -> quantify $ Sem.Equals t e'
Raw.Adj pat es -> do
(es', quantifies) <- unzip <$> glossTerm `each` es
let quantify = compose $ reverse quantifies
pure $ \t -> quantify $ Sem.FormulaAdj t pat es'
glossVP :: Raw.VerbPhrase -> Gloss (Sem.Term -> Sem.Formula)
glossVP = \case
Raw.VPVerb verb -> glossVerb verb
Raw.VPAdj adjs -> do
mkAdjs <- glossAdj `each` toList adjs
pure (\x -> Sem.makeConjunction [mkAdj x | mkAdj <- mkAdjs])
Raw.VPVerbNot verb -> (Sem.Not .) <$> glossVerb verb
Raw.VPAdjNot adjs -> (Sem.Not .) <$> glossVP (Raw.VPAdj adjs)
glossVerb :: Raw.Verb -> Gloss (Sem.Term -> Sem.Formula)
glossVerb (Raw.Verb pat es) = do
(es', quantifies) <- unzip <$> glossTerm `each` es
let quantify = compose $ reverse quantifies
pure $ \ t -> quantify $ Sem.FormulaVerb t pat es'
glossNoun :: Raw.Noun -> Gloss (Sem.Term -> Sem.Formula)
glossNoun (Raw.Noun pat es) = do
(es', quantifies) <- unzip <$> glossTerm `each` es
let quantify = compose $ reverse quantifies
pure case Sem.sg pat of
-- Everything is a set
[Just (Sem.Word "set")] -> const Sem.Top
_ -> \e' -> quantify (Sem.FormulaNoun e' pat es')
glossFun :: Raw.Fun -> Gloss (Sem.Term, Sem.Formula -> Sem.Formula)
glossFun (Raw.Fun phrase es) = do
(es', quantifies) <- unzip <$> glossTerm `each` es
let quantify = compose $ reverse quantifies
pure (Sem.TermSymbol (Sem.SymbolFun phrase) es', quantify)
glossTerm :: Raw.Term -> Gloss (Sem.Term, Sem.Formula -> Sem.Formula)
glossTerm = \case
Raw.TermExpr e ->
(, id) <$> glossExpr e
Raw.TermFun f ->
glossFun f
Raw.TermIota x stmt -> do
stmt' <- glossStmt stmt
pure (Sem.Iota x (abstract1 x stmt'), id)
Raw.TermQuantified quantifier np -> do
quantify <- glossQuantifier quantifier
(mkConstraint, maySuchThat) <- glossNPMaybe np
v <- freshVar
let e = Sem.TermVar v
let constraints = [mkConstraint e]
pure (e, quantify (v:|[]) (maybeToList maySuchThat <> constraints))
glossStmt :: Raw.Stmt -> Gloss Sem.Formula
glossStmt = \case
Raw.StmtFormula f -> glossFormula f
Raw.StmtNeg s -> Sem.Not <$> glossStmt s
Raw.StmtVerbPhrase ts vp -> do
(ts', quantifies) <- NonEmpty.unzip <$> glossTerm `each` ts
vp' <- glossVP vp
let phi = Sem.makeConjunction (vp' <$> toList ts')
pure (compose quantifies phi)
Raw.StmtNoun ts np -> do
(ts', quantifies) <- NonEmpty.unzip <$> glossTerm `each` ts
(np', maySuchThat) <- glossNPMaybe np
let andSuchThat phi = case maySuchThat of
Just suchThat -> phi `Sem.And` suchThat
Nothing -> phi
psi = Sem.makeConjunction (andSuchThat . np' <$> toList ts')
pure (compose quantifies psi)
Raw.StmtStruct t sp -> do
(t', quantify) <- glossTerm t
pure (quantify (Sem.TermSymbol (Sem.SymbolPredicate (Sem.PredicateNounStruct sp)) [t']))
Raw.StmtConnected conn s1 s2 -> glossConnective conn <*> glossStmt s1 <*> glossStmt s2
Raw.StmtQuantPhrase (Raw.QuantPhrase quantifier np) f -> do
(vars, constraints) <- glossNPList np
f' <- glossStmt f
quantify <- glossQuantifier quantifier
pure (quantify vars [constraints] f')
Raw.StmtExists np -> do
(vars, constraints) <- glossNPList np
pure (Sem.makeExists vars constraints)
Raw.SymbolicQuantified quant vs bound suchThat have -> do
quantify <- glossQuantifier quant
bound' <- glossBound bound
suchThatConstraints <- maybeToList <$> glossStmt `each` suchThat
let boundConstraints = bound' (toList vs)
have' <- glossStmt have
pure (quantify vs (boundConstraints <> suchThatConstraints) have')
-- | A bound applies to all listed variables. Note the use of '<**>'.
--
-- >>> ([1, 2, 3] <**> [(+ 10)]) == [11, 12, 13]
--
glossBound :: Raw.Bound -> Gloss ([VarSymbol] -> [Sem.Formula])
glossBound = \case
Raw.Unbounded -> pure (const [])
Raw.Bounded sign rel term -> do
term' <- glossExpr term
let sign' = case sign of
Positive -> id
Negative -> Sem.Not
bound <- case rel of
Raw.RelationSymbol rel' ->
pure $ \v -> sign' $
Sem.Relation rel' (Sem.TermVar v : [term'])
Raw.RelationExpr e -> do
e' <- glossExpr e
pure $ \v -> sign' $
Sem.TermPair (Sem.TermVar v) term' `Sem.IsElementOf` e'
pure \vs -> vs <**> [bound]
gatherGuards :: Traversable t => t VarSymbol -> Gloss (Maybe (t Sem.Formula))
gatherGuards vs = do
info <- gets pretypings
pure $ for vs $ \v -> Map.lookup v info
glossConnective :: Raw.Connective -> Gloss (Sem.Formula -> Sem.Formula -> Sem.Formula)
glossConnective conn = pure (Sem.Connected conn)
glossAsm :: Raw.Asm -> Gloss [Sem.Asm]
glossAsm = \case
Raw.AsmSuppose s -> do
s' <- glossStmt s
pure [Sem.Asm s']
Raw.AsmLetNoun vs np -> do
(np', maySuchThat) <- glossNPMaybe np
let f v = Sem.Asm (np' (Sem.TermVar v) )
let suchThat = Sem.Asm <$> maybeToList maySuchThat
pure (suchThat <> fmap f (toList vs))
Raw.AsmLetIn vs e -> do
e' <- glossExpr e
let f v = Sem.Asm (Sem.TermVar v `Sem.IsElementOf` e')
pure $ fmap f (toList vs)
Raw.AsmLetStruct structLabel structPhrase ->
pure [Sem.AsmStruct structLabel structPhrase]
Raw.AsmLetThe _ _ ->
_TODO "glossAsm AsmLetThe"
Raw.AsmLetEq _ _ ->
_TODO "glossAsm AsmLetEq"
-- | A quantifier is interpreted as a quantification function that takes a nonempty list of variables,
-- a list of formulas expressing the constraints, and the formula to be quantified as arguments.
-- It then returns the quantification with the correct connective for the constraints.
glossQuantifier
:: (Foldable t, Applicative f)
=> Raw.Quantifier
-> f (t VarSymbol
-> [Sem.ExprOf VarSymbol]
-> Sem.Formula
-> Sem.Formula)
glossQuantifier quantifier = pure quantify
where
quantify vs constraints f = case (quantifier, constraints) of
(Raw.Universally, []) ->
Sem.makeForall vs f
(Raw.Existentially, []) ->
Sem.makeExists vs f
(Raw.Nonexistentially, []) ->
Sem.Not (Sem.makeExists vs f)
(Raw.Universally, _) ->
Sem.makeForall vs (Sem.makeConjunction constraints `Sem.Implies` f)
(Raw.Existentially, _) ->
Sem.makeExists vs (Sem.makeConjunction constraints `Sem.And` f)
(Raw.Nonexistentially, _) ->
Sem.Not (Sem.makeExists vs (Sem.makeConjunction constraints `Sem.And` f))
glossAsms :: [Raw.Asm] -> Gloss [Sem.Asm]
glossAsms asms = do
asms' <- glossAsm `each` asms
pure $ concat asms'
glossAxiom :: Raw.Axiom -> Gloss Sem.Axiom
glossAxiom (Raw.Axiom asms f) = Sem.Axiom <$> glossAsms asms <*> glossStmt f
glossLemma :: Raw.Lemma -> Gloss Sem.Lemma
glossLemma (Raw.Lemma asms f) = Sem.Lemma <$> glossAsms asms <*> glossStmt f
glossDefn :: Raw.Defn -> Gloss Sem.Defn
glossDefn = \case
Raw.Defn asms h f -> glossDefnHead h <*> glossAsms asms <*> glossStmt f
Raw.DefnFun asms (Raw.Fun fun vs) _ e -> do
asms' <- glossAsms asms
e' <- case e of
-- TODO improve error handling or make grammar stricter
Raw.TermQuantified _ _ -> error $ "Quantified term in definition: " <> show e
_ -> fst <$> glossTerm e
pure $ Sem.DefnFun asms' fun vs e'
Raw.DefnOp (Raw.SymbolPattern op vs) e ->
Sem.DefnOp op vs <$> glossExpr e
-- | A definition head is interpreted as a builder of a definition,
-- depending on a previous assumptions and on a rhs.
glossDefnHead :: Raw.DefnHead -> Gloss ([Sem.Asm] -> Sem.Formula -> Sem.Defn)
glossDefnHead = \case
-- TODO add info from NP.
Raw.DefnAdj _mnp v (Raw.Adj adj vs) -> do
pure $ \asms f -> Sem.DefnPredicate asms (Sem.PredicateAdj adj) (v :| vs) f
--mnp' <- glossNPMaybe `each` mnp
--pure $ case mnp' of
-- Nothing -> \asms f -> Sem.DefnPredicate asms (Sem.PredicateAdj adj') (v :| vs) f
-- Just np' -> \asms f -> Sem.DefnPredicate asms (Sem.PredicateAdj adj') (v :| vs) (Sem.FormulaAnd (np' v) f)
Raw.DefnVerb _mnp v (Raw.Verb verb vs) ->
pure $ \asms f -> Sem.DefnPredicate asms (Sem.PredicateVerb verb) (v :| vs) f
Raw.DefnNoun v (Raw.Noun noun vs) ->
pure $ \asms f -> Sem.DefnPredicate asms (Sem.PredicateNoun noun) (v :| vs) f
Raw.DefnRel v1 rel v2 ->
pure $ \asms f -> Sem.DefnPredicate asms (Sem.PredicateRelation rel) (v1 :| [v2]) f
Raw.DefnSymbolicPredicate (Raw.PrefixPredicate symb _ar) vs ->
pure $ \asms f -> Sem.DefnPredicate asms (Sem.PredicateSymbol symb) vs f
glossProof :: Raw.Proof -> Gloss Sem.Proof
glossProof = \case
Raw.Omitted ->
pure Sem.Omitted
Raw.Qed by ->
pure (Sem.Qed by)
Raw.ByContradiction proof ->
Sem.ByContradiction <$> glossProof proof
Raw.BySetInduction mt proof ->
Sem.BySetInduction <$> mmt' <*> glossProof proof
where
mmt' = case mt of
Nothing -> pure Nothing
Just (Raw.TermExpr (Raw.ExprVar x)) -> pure (Just (Sem.TermVar x))
Just _t -> throwError GlossInductionError
Raw.ByOrdInduction proof ->
Sem.ByOrdInduction <$> glossProof proof
Raw.ByCase cases -> Sem.ByCase <$> glossCase `each` cases
Raw.Have _ms s by proof -> case s of
-- Pragmatics: an existential @Have@ implicitly
-- introduces the witness and is interpreted as a @Take@ construct.
Raw.SymbolicExists vs bound suchThat -> do
bound' <- glossBound bound
suchThat' <- glossStmt suchThat
proof' <- glossProof proof
pure (Sem.Take vs (Sem.makeConjunction (suchThat' : bound' (toList vs))) by proof')
_otherwise ->
Sem.Have <$> glossStmt s <*> pure by <*> glossProof proof
Raw.Assume stmt proof ->
Sem.Assume <$> glossStmt stmt <*> glossProof proof
Raw.FixSymbolic xs bound proof -> do
bound' <- glossBound bound
proof' <- glossProof proof
pure (Sem.Fix xs (Sem.makeConjunction (bound' (toList xs))) proof')
Raw.FixSuchThat xs stmt proof -> do
stmt' <- glossStmt stmt
proof' <- glossProof proof
pure (Sem.Fix xs stmt' proof')
Raw.TakeVar vs bound suchThat by proof -> do
bound' <- glossBound bound
suchThat' <- glossStmt suchThat
proof' <- glossProof proof
pure (Sem.Take vs (Sem.makeConjunction (suchThat' : bound' (toList vs))) by proof')
Raw.TakeNoun np by proof -> do
(vs, constraints) <- glossNPList np
proof' <- glossProof proof
pure $ Sem.Take vs constraints by proof'
Raw.Subclaim subclaim subproof proof ->
Sem.Subclaim <$> glossStmt subclaim <*> glossProof subproof <*> glossProof proof
Raw.Suffices reduction by proof ->
Sem.Suffices <$> glossStmt reduction <*> pure by <*> glossProof proof
Raw.Define var term proof ->
Sem.Define var <$> glossExpr term <*> glossProof proof
Raw.DefineFunction funVar argVar valueExpr domVar domExpr proof ->
if domVar == argVar
then Sem.DefineFunction funVar argVar <$> glossExpr valueExpr <*> glossExpr domExpr <*> glossProof proof
else error "mismatched variables in function definition."
Raw.DefineFunctionLocal funVar domVar ranExpr funVar2 argVar definitions proof -> do
if funVar == funVar2
then Sem.DefineFunctionLocal funVar argVar domVar <$> glossExpr ranExpr <*> (glossLocalFunctionExprDef `each` definitions) <*> glossProof proof
else error "missmatched function names"
Raw.Calc calc proof ->
Sem.Calc <$> glossCalc calc <*> glossProof proof
glossLocalFunctionExprDef :: (Raw.Expr, Raw.Formula) -> Gloss (Sem.Term, Sem.Formula)
glossLocalFunctionExprDef (definingExpression, localDomain) = do
e <- glossExpr definingExpression
d <- glossFormula localDomain
pure (e,d)
glossCase :: Raw.Case -> Gloss Sem.Case
glossCase (Raw.Case caseOf proof) = Sem.Case <$> glossStmt caseOf <*> glossProof proof
glossCalc :: Raw.Calc -> Gloss Sem.Calc
glossCalc = \case
Raw.Equation e eqns -> do
e' <- glossExpr e
eqns' <- (\(ei, ji) -> (,ji) <$> glossExpr ei) `each` eqns
pure (Sem.Equation e' eqns')
Raw.Biconditionals p ps -> do
p' <- glossFormula p
ps' <- (\(pi, ji) -> (,ji) <$> glossFormula pi) `each` ps
pure (Sem.Biconditionals p' ps')
glossSignature :: Raw.Signature -> Gloss Sem.Signature
glossSignature sig = case sig of
Raw.SignatureAdj v (Raw.Adj adj vs) ->
pure $ Sem.SignaturePredicate (Sem.PredicateAdj adj) (v :| vs)
Raw.SignatureVerb v (Raw.Verb verb vs) ->
pure $ Sem.SignaturePredicate (Sem.PredicateVerb verb) (v :| vs)
Raw.SignatureNoun v (Raw.Noun noun vs) ->
pure $ Sem.SignaturePredicate (Sem.PredicateNoun noun) (v :| vs)
Raw.SignatureSymbolic (Raw.SymbolPattern op vs) np -> do
(np', maySuchThat) <- glossNPMaybe np
let andSuchThat phi = case maySuchThat of
Just suchThat -> phi `Sem.And` suchThat
Nothing -> phi
let op' = Sem.TermOp op (Sem.TermVar <$> vs)
v <- freshVar
let v' = Sem.TermVar v
pure $ Sem.SignatureFormula $ Sem.makeForall [v] ((v' `Sem.Equals` op') `Sem.Implies` andSuchThat (np' v'))
glossStructDefn :: Raw.StructDefn -> Gloss Sem.StructDefn
glossStructDefn (Raw.StructDefn phrase base carrier fixes assumes) = do
assumes' <- (\(m, stmt) -> (m,) <$> glossStmt stmt) `each` assumes
-- We substitute occurrences of the bare label with the builtin symbol @\carrier@.
-- let assumes'' = fmap (annotateCarrierFormula carrier) assumes'
let assumes'' = [(m, annotateCarrierFormula carrier phi) |(m, phi) <- assumes']
let base' = Set.fromList base
let fixes' = Set.fromList fixes
pure $ Sem.StructDefn phrase base' carrier fixes' assumes''
-- | Replace free variables corresponding to the label of a structure
-- with the abstract carrier symbol.
annotateCarrierFormula :: Sem.VarSymbol -> Sem.Term -> Sem.Term
annotateCarrierFormula lbl = \case
a `Sem.IsElementOf` Sem.TermVar x | x == lbl -> a `Sem.IsElementOf` Sem.TermSymbolStruct CarrierSymbol (Just (Sem.TermVar lbl))
x -> x
glossAbbreviation :: Raw.Abbreviation -> Gloss Sem.Abbreviation
glossAbbreviation = \case
Raw.AbbreviationAdj x (Raw.Adj adj xs) stmt ->
makeAbbrStmt (Sem.SymbolPredicate (Sem.PredicateAdj adj)) (x : xs) stmt
Raw.AbbreviationVerb x (Raw.Verb verb xs) stmt ->
makeAbbrStmt (Sem.SymbolPredicate (Sem.PredicateVerb verb)) (x : xs) stmt
Raw.AbbreviationNoun x (Raw.Noun noun xs) stmt ->
makeAbbrStmt (Sem.SymbolPredicate (Sem.PredicateNoun noun)) (x : xs) stmt
Raw.AbbreviationRel x rel y stmt ->
makeAbbrStmt (Sem.SymbolPredicate (Sem.PredicateRelation rel)) [x, y] stmt
Raw.AbbreviationFun (Raw.Fun fun xs) t ->
makeAbbrTerm (Sem.SymbolFun fun) xs t
Raw.AbbreviationEq (Raw.SymbolPattern op xs) e ->
makeAbbrExpr (Sem.SymbolMixfix op) xs e
makeAbbrStmt :: Sem.Symbol -> [VarSymbol] -> Raw.Stmt -> Gloss (Sem.Abbreviation)
makeAbbrStmt symbol zs stmt = do
stmt' <- glossStmt stmt
let aux y = case y `List.elemIndex` zs of
Nothing -> error ("free variable " <> show y <> " in abbreviation " <> show symbol)
Just k -> Left k
let scope = abstractEither aux stmt' :: Scope Int Sem.ExprOf Void
pure (Sem.Abbreviation symbol scope)
makeAbbrTerm :: Sem.Symbol -> [VarSymbol] -> Raw.Term -> Gloss (Sem.Abbreviation)
makeAbbrTerm symbol zs t = do
(t', _quantify) <- glossTerm t
-- TODO replace "glossTerm t" with a more specific interpretation function
-- that checks if no indefinite terms are part of the term (erroring out if the term is indefinite).
let aux y = case y `List.elemIndex` zs of
Nothing -> error ("free variable " <> show y <> " in abbreviation " <> show symbol)
Just k -> Left k
let scope = abstractEither aux t' :: Scope Int Sem.ExprOf Void
pure (Sem.Abbreviation symbol scope)
makeAbbrExpr :: Sem.Symbol -> [VarSymbol] -> Raw.Expr -> Gloss (Sem.Abbreviation)
makeAbbrExpr symbol zs e = do
e' <- glossExpr e
-- TODO replace "glossTerm t" with a more specific interpretation function
-- that checks if no indefinite terms are part of the term (erroring out if the term is indefinite).
let aux y = case y `List.elemIndex` zs of
Nothing -> error ("free variable " <> show y <> " in abbreviation " <> show symbol)
Just k -> Left k
let scope = abstractEither aux e' :: Scope Int Sem.ExprOf Void
pure (Sem.Abbreviation symbol scope)
glossInductive :: Raw.Inductive -> Gloss Sem.Inductive
glossInductive (Raw.Inductive (Raw.SymbolPattern symbol args) domain rules) =
Sem.Inductive symbol args <$> glossExpr domain <*> (glossRule `each` rules)
where
glossRule (Raw.IntroRule phis psi) = Sem.IntroRule <$> (glossFormula `each` phis) <*> glossFormula psi
glossBlock :: Raw.Block -> Gloss Sem.Block
glossBlock = \case
Raw.BlockAxiom pos marker axiom ->
Sem.BlockAxiom pos marker <$> glossAxiom axiom
Raw.BlockLemma pos marker lemma ->
Sem.BlockLemma pos marker <$> glossLemma lemma
Raw.BlockProof pos proof ->
Sem.BlockProof pos <$> glossProof proof
Raw.BlockDefn pos marker defn -> do
defn' <- glossDefn defn
whenLeft (isWellformedDefn defn') (\err -> throwError (GlossDefnError err (show defn')))
pure $ Sem.BlockDefn pos marker defn'
Raw.BlockAbbr pos marker abbr ->
Sem.BlockAbbr pos marker <$> glossAbbreviation abbr
Raw.BlockSig pos asms sig ->
Sem.BlockSig pos <$> glossAsms asms <*> glossSignature sig
Raw.BlockStruct pos m structDefn ->
Sem.BlockStruct pos m <$> glossStructDefn structDefn
Raw.BlockData _pos _ ->
_TODO "glossBlock datatype definitions"
Raw.BlockInductive pos marker ind ->
Sem.BlockInductive pos marker <$> glossInductive ind
glossBlocks :: [Raw.Block] -> Gloss [Sem.Block]
glossBlocks blocks = glossBlock `each` blocks
|