1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
|
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE RecursiveDo #-}
-- | Concrete syntax of the surface language.
module Syntax.Concrete where
import Base
import Syntax.Abstract
import Syntax.Concrete.Keywords
import Syntax.Lexicon (Lexicon(..), lexiconAdjs, splitOnVariableSlot)
import Syntax.Token
import Data.HashSet qualified as HS
import Data.List.NonEmpty qualified as NonEmpty
import Data.HashMap.Strict qualified as HM
import Text.Earley (Grammar, Prod, (<?>), rule, satisfy, terminal)
import Text.Earley.Mixfix
import Text.Megaparsec.Pos (SourcePos)
grammar :: Lexicon -> Grammar r (Prod r Text (Located Token) Block)
grammar lexicon@Lexicon{..} = mdo
let makeOp :: ([Maybe Token], Associativity) -> ([Maybe (Prod r Text (Located Token) Token)], Associativity)
makeOp (pat, assoc) = (map (fmap token) pat, assoc)
ops = map (map makeOp) (toList (HM.toList . HM.map fst <$> lexiconMixfix))
conns = map (map makeOp) lexiconConnectives
integer <- rule (terminal maybeIntToken <?> "integer")
relator <- rule $ unLocated <$> (satisfy (\ltok -> unLocated ltok `HM.member` lexiconRelationSymbols) <?> "relator")
varSymbol <- rule (terminal maybeVarToken <?> "variable")
varSymbols <- rule (commaList varSymbol)
cmd <- rule (terminal maybeCmdToken <?> "TEX command")
--
-- Formulas have three levels:
--
-- + Expressions: atoms or operators applied to atoms.
-- + Chains: comma-lists of expressions, separated by relators.
-- + Formulas: chains or connectives applied to chains.
--
-- For example, the formula @x, y < z \implies x, y < z + 1@ consist of the
-- connective @\implies@ applied to two chains @x, y < z@ and @x, y < z + 1@.
-- In turn, the chain @x, y < z + 1@ consist of three expressions,
-- @x@, @y@, and @z + 1@. Finally, @z + 1@ consist the operator @+@
-- applied to two atoms, the variable @z@ and the number literal @1@.
--
-- This split is due to the different behaviour of relators compared to
-- operators and connectives. Relators can chain (@x < y < z@) and allow
-- lists as arguments, as in the above example. Operators and connectives
-- instead have precedence and fixity. The only syntactic difference between
-- an operator and a connective is the relative precedence compared to relators.
--
replaceBound <- rule $ (,) <$> varSymbol <* _in <*> expr
replaceBounds <- rule $ commaList replaceBound
replaceFun <- rule $ ExprReplace <$> expr <* _pipe <*> replaceBounds <*> optional (_pipe *> comprStmt)
comprStmt <- rule $ (StmtFormula <$> formula) <|> text stmt
replacePredSymbolic <- rule $ ExprReplacePred <$> varSymbol <* _pipe <*> (command "exists" *> varSymbol) <* _in <*> expr <* _dot <*> (StmtFormula <$> formula)
replacePredText <- rule $ ExprReplacePred <$> varSymbol <* _pipe <*> (begin "text" *> _exists *> beginMath *> varSymbol <* _in) <*> expr <* endMath <* _suchThat <*> stmt <* end "text"
replacePred <- rule $ replacePredSymbolic <|> replacePredText
let exprStructOpOf ann = HS.foldr alg empty (HM.keysSet lexiconStructFun)
where
alg s prod = prod <|> (ExprStructOp <$> structSymbol s <*> ann)
exprStructOp <- rule (exprStructOpOf (optional (bracket expr)))
let bracedArgs1 ar arg = count1 ar $ group arg
let prefixPredicateOf f arg symb@(PrefixPredicate c ar) = f <$> pure symb <* command c <*> bracedArgs1 ar arg
exprParen <- rule $ paren expr
exprInteger <- rule $ ExprInteger <$> integer
exprVar <- rule $ ExprVar <$> varSymbol
exprTuple <- rule $ makeTuple <$> paren (commaList2 expr)
exprSep <- rule $ brace $ ExprSep <$> varSymbol <* _in <*> expr <* _pipe <*> comprStmt
exprReplace <- rule $ brace $ (replaceFun <|> replacePred)
exprFinSet <- rule $ brace $ ExprFiniteSet <$> exprs
exprBase <- rule $ asum [exprVar, exprInteger, exprStructOp, exprParen, exprTuple, exprSep, exprReplace, exprFinSet]
exprApp <- rule $ ExprApp <$> exprBase <*> (paren expr <|> exprTuple)
expr <- mixfixExpression ops (exprBase <|> exprApp) ExprOp
exprs <- rule $ commaList expr
relationSign <- rule $ pure Positive <|> (Negative <$ command "not")
relationExpr <- rule $ RelationExpr <$> (command "mathrel" *> group expr)
relation <- rule $ (RelationSymbol <$> relator) <|> relationExpr
chainBase <- rule $ ChainBase <$> exprs <*> relationSign <*> relation <*> exprs
chainCons <- rule $ ChainCons <$> exprs <*> relationSign <*> relation <*> chain
chain <- rule $ chainCons <|> chainBase
formulaPredicate <- rule $ asum $ prefixPredicateOf FormulaPredicate expr <$> HM.keys lexiconPrefixPredicates
formulaChain <- rule $ FormulaChain <$> chain
formulaBottom <- rule $ PropositionalConstant IsBottom <$ command "bot" <?> "\"\\bot\""
formulaTop <- rule $ PropositionalConstant IsTop <$ command "top" <?> "\"\\top\""
formulaExists <- rule $ FormulaQuantified Existentially <$> (command "exists" *> varSymbols) <*> maybeBounded <* _dot <*> formula
formulaAll <- rule $ FormulaQuantified Universally <$> (command "forall" *> varSymbols) <*> maybeBounded <* _dot <*> formula
formulaQuantified <- rule $ formulaExists <|> formulaAll
formulaBase <- rule $ asum [formulaChain, formulaPredicate, formulaBottom, formulaTop, paren formula]
formulaConn <- mixfixExpression conns formulaBase makeConnective
formula <- rule $ formulaQuantified <|> formulaConn
-- These are asymmetric formulas (only variables are allowed on one side).
-- They express judgements.
--
assignment <- rule $ (,) <$> varSymbol <* (_eq <|> _defeq) <*> expr
typing <- rule $ (,) <$> varSymbols <* (_in <|> _colon) <*> expr
adjL <- rule $ adjLOf lexicon term
adjR <- rule $ adjROf lexicon term
adj <- rule $ adjOf lexicon term
adjVar <- rule $ adjOf lexicon var
var <- rule $ math varSymbol
vars <- rule $ math varSymbols
verb <- rule $ verbOf lexicon sg term
verbPl <- rule $ verbOf lexicon pl term
verbVar <- rule $ verbOf lexicon sg var
noun <- rule $ nounOf lexicon sg term nounName -- Noun with optional variable name.
nounList <- rule $ nounOf lexicon sg term nounNames -- Noun with a list of names.
nounVar <- rule $ fst <$> nounOf lexicon sg var (pure Nameless) -- No names in defined nouns.
nounPl <- rule $ nounOf lexicon pl term nounNames
nounPlMay <- rule $ nounOf lexicon pl term nounName
structNoun <- rule $ structNounOf lexicon sg var var
structNounNameless <- rule $ fst <$> structNounOf lexicon sg var (pure Nameless)
fun <- rule $ funOf lexicon sg term
funVar <- rule $ funOf lexicon sg var
attrRThat <- rule $ AttrRThat <$> thatVerbPhrase
attrRThats <- rule $ ((:[]) <$> attrRThat) <|> ((\a a' -> [a,a']) <$> attrRThat <* _and <*> attrRThat) <|> pure []
attrRs <- rule $ ((:[]) <$> adjR) <|> ((\a a' -> [a,a']) <$> adjR <* _and <*> adjR) <|> pure []
attrRight <- rule $ (<>) <$> attrRs <*> attrRThats
verbPhraseVerbSg <- rule $ VPVerb <$> verb
verbPhraseVerbNotSg <- rule $ VPVerbNot <$> (_does *> _not *> verbPl)
verbPhraseAdjSg <- rule $ VPAdj . (:|[]) <$> (_is *> adj)
verbPhraseAdjAnd <- rule do {_is; a1 <- adj; _and; a2 <- adj; pure (VPAdj (a1 :| [a2]))}
verbPhraseAdjNotSg <- rule $ VPAdjNot . (:|[]) <$> (_is *> _not *> adj)
verbPhraseNotSg <- rule $ verbPhraseVerbNotSg <|> verbPhraseAdjNotSg
verbPhraseSg <- rule $ verbPhraseVerbSg <|> verbPhraseAdjSg <|> verbPhraseAdjAnd <|> verbPhraseNotSg
-- LATER can cause technical ambiguities? verbPhraseVerbPl <- rule $ VPVerb <$> verbPl
verbPhraseVerbNotPl <- rule $ VPVerbNot <$> (_do *> _not *> verbPl)
verbPhraseAdjPl <- rule $ VPAdj . (:|[]) <$> (_are *> adj)
verbPhraseAdjNotPl <- rule $ VPAdjNot . (:|[]) <$> (_are *> _not *> adj)
verbPhraseNotPl <- rule $ verbPhraseVerbNotPl <|> verbPhraseAdjNotPl
verbPhrasePl <- rule $ verbPhraseAdjPl <|> verbPhraseNotPl -- LATER <|> verbPhraseVerbPl
thatVerbPhrase <- rule $ _that *> verbPhraseSg
nounName <- rule $ optional (math varSymbol)
nounNames <- rule $ math (commaList_ varSymbol) <|> pure []
nounPhrase <- rule $ makeNounPhrase <$> many adjL <*> noun <*> attrRight <*> optional suchStmt
nounPhrase' <- rule $ makeNounPhrase <$> many adjL <*> nounList <*> attrRight <*> optional suchStmt
nounPhrasePl <- rule $ makeNounPhrase <$> many adjL <*> nounPl <*> attrRight <*> optional suchStmt
nounPhrasePlMay <- rule $ makeNounPhrase <$> many adjL <*> nounPlMay <*> attrRight <*> optional suchStmt
nounPhraseMay <- rule $ makeNounPhrase <$> many adjL <*> noun <*> attrRight <*> optional suchStmt
-- Quantification phrases for quantification and indfinite terms.
quantAll <- rule $ QuantPhrase Universally <$> (_forEvery *> nounPhrase' <|> _forAll *> nounPhrasePl)
quantSome <- rule $ QuantPhrase Existentially <$> (_some *> (nounPhrase' <|> nounPhrasePl))
quantNone <- rule $ QuantPhrase Nonexistentially <$> (_no *> (nounPhrase' <|> nounPhrasePl))
quant <- rule $ quantAll <|> quantSome <|> quantNone -- <|> quantUniq
termExpr <- rule $ TermExpr <$> math expr
termFun <- rule $ TermFun <$> (optional _the *> fun)
termIota <- rule $ TermIota <$> (_the *> var) <* _suchThat <*> stmt
termAll <- rule $ TermQuantified Universally <$> (_every *> nounPhraseMay)
termSome <- rule $ TermQuantified Existentially <$> (_some *> nounPhraseMay)
termNo <- rule $ TermQuantified Nonexistentially <$> (_no *> nounPhraseMay)
termQuantified <- rule $ termAll <|> termSome <|> termNo
term <- rule $ termExpr <|> termFun <|> termQuantified <|> termIota
-- Basic statements @stmt'@ are statements without any conjunctions or quantifiers.
--
let singletonTerm = (:| []) <$> term
nonemptyTerms = andList1 term
stmtVerbSg <- rule $ StmtVerbPhrase <$> singletonTerm <*> verbPhraseSg
stmtVerbPl <-rule $ StmtVerbPhrase <$> andList1 term <*> verbPhrasePl
stmtVerb <- rule $ stmtVerbSg <|> stmtVerbPl
stmtNounIs <- rule $ StmtNoun <$> singletonTerm <* _is <* _an <*> nounPhrase
stmtNounAre <- rule $ StmtNoun <$> (nonemptyTerms <* _are) <*> nounPhrasePlMay
stmtNounIsNot <- rule $ StmtNeg <$> (StmtNoun <$> singletonTerm <* _is <* _not <* _an <*> nounPhrase)
stmtNounAreNot <- rule $ StmtNeg <$> (StmtNoun <$> nonemptyTerms <* (_are *> _not) <*> nounPhrasePlMay)
stmtNoun <- rule $ stmtNounIs <|> stmtNounIsNot <|> stmtNounAre <|> stmtNounAreNot
stmtStruct <- rule $ StmtStruct <$> (term <* _is <* _an) <*> structNounNameless
stmtExists <- rule $ StmtExists <$> (_exists *> _an *> nounPhrase')
stmtExist <- rule $ StmtExists <$> (_exist *> nounPhrasePl)
stmtExistsNot <- rule $ StmtNeg . StmtExists <$> (_exists *> _no *> nounPhrase')
stmtFormula <- rule $ StmtFormula <$> math formula
stmtFormualNeg <- rule $ StmtNeg . StmtFormula <$> (_not *> math formula)
stmtBot <- rule $ StmtFormula (PropositionalConstant IsBottom) <$ _contradiction
stmt' <- rule $ stmtVerb <|> stmtNoun <|> stmtStruct <|> stmtFormula <|> stmtFormualNeg <|> stmtBot
stmtOr <- rule $ stmt' <|> (StmtConnected Disjunction <$> stmt' <* _or <*> stmt)
stmtAnd <- rule $ stmtOr <|> (StmtConnected Conjunction <$> stmtOr <* _and <*> stmt)
stmtIff <- rule $ stmtAnd <|> (StmtConnected Equivalence <$> stmtAnd <* _iff <*> stmt)
stmtIf <- rule $ StmtConnected Implication <$> (_if *> stmt) <* optional _comma <* _then <*> stmt
stmtXor <- rule $ StmtConnected ExclusiveOr <$> (_either *> stmt) <* _or <*> stmt
stmtNor <- rule $ StmtConnected NegatedDisjunction <$> (_neither *> stmt) <* _nor <*> stmt
stmtNeg <- rule $ StmtNeg <$> (_itIsWrong *> stmt)
stmtQuantPhrase <- rule $ StmtQuantPhrase <$> (_for *> quant) <* optional _comma <* optional _have <*> stmt
suchStmt <- rule $ _suchThat *> stmt <* optional _comma
-- Symbolic quantifications with or without generalized bounds.
symbolicForall <- rule $ SymbolicForall
<$> ((_forAll <|> _forEvery) *> beginMath *> varSymbols)
<*> maybeBounded <* endMath
<*> optional suchStmt
<* optional _have <*> stmt
symbolicExists <- rule $ SymbolicExists
<$> ((_exists <|> _exist) *> beginMath *> varSymbols)
<*> maybeBounded <* endMath
<*> ((_suchThat *> stmt) <|> pure (StmtFormula (PropositionalConstant IsTop)))
symbolicNotExists <- rule $ SymbolicNotExists
<$> (_exists *> _no *> beginMath *> varSymbols)
<*> maybeBounded <* endMath
<* _suchThat <*> stmt
symbolicBound <- rule $ Bounded <$> relationSign <*> relation <*> expr
maybeBounded <- rule (pure Unbounded <|> symbolicBound)
symbolicQuantified <- rule $ symbolicForall <|> symbolicExists <|> symbolicNotExists
stmt <- rule $ asum [stmtNeg, stmtIf, stmtXor, stmtNor, stmtExists, stmtExist, stmtExistsNot, stmtQuantPhrase, stmtIff, symbolicQuantified] <?> "a statement"
asmLetIn <- rule $ uncurry AsmLetIn <$> (_let *> math typing)
asmLetNoun <- rule $ AsmLetNoun <$> (_let *> fmap pure var <* (_be <|> _denote) <* _an) <*> nounPhrase
asmLetNouns <- rule $ AsmLetNoun <$> (_let *> vars <* (_be <|> _denote)) <*> nounPhrasePlMay
asmLetEq <- rule $ uncurry AsmLetEq <$> (_let *> math assignment)
asmLetThe <- rule $ AsmLetThe <$> (_let *> var <* _be <* _the) <*> fun
asmLetStruct <- rule $ AsmLetStruct <$> (_let *> var <* _be <* _an) <*> structNounNameless
asmLet <- rule $ asmLetNoun <|> asmLetNouns <|> asmLetIn <|> asmLetEq <|> asmLetThe <|> asmLetStruct
asmSuppose <- rule $ AsmSuppose <$> (_suppose *> stmt)
asm <- rule $ andList1_ (asmLet <|> asmSuppose) <* _dot
asms <- rule $ concat <$> many asm
axiom <- rule $ Axiom <$> asms <* optional _then <*> stmt <* _dot
lemma <- rule $ Lemma <$> asms <* optional _then <*> stmt <* _dot
defnAdj <- rule $ DefnAdj <$> optional (_an *> nounPhrase) <*> var <* _is <*> adjVar
defnVerb <- rule $ DefnVerb <$> optional (_an *> nounPhrase) <*> var <*> verbVar
defnNoun <- rule $ DefnNoun <$> var <* _is <* _an <*> nounVar
defnRel <- rule $ DefnRel <$> (beginMath *> varSymbol) <*> relator <*> varSymbol <* endMath
defnSymbolicPredicate <- rule $ math $ asum $ prefixPredicateOf DefnSymbolicPredicate varSymbol <$> HM.keys lexiconPrefixPredicates
defnHead <- rule $ optional _write *> asum [defnAdj, defnVerb, defnNoun, defnRel, defnSymbolicPredicate]
defnIf <- rule $ Defn <$> asms <*> defnHead <* (_iff <|> _if) <*> stmt <* _dot
defnFunSymb <- rule $ _comma *> termExpr <* _comma -- ^ Optional symbolic equivalent.
defnFun <- rule $ DefnFun <$> asms <*> (optional _the *> funVar) <*> optional defnFunSymb <* _is <*> term <* _dot
symbolicPatternEqTerm <- rule do
pat <- beginMath *> symbolicPattern <* _eq
e <- expr <* endMath <* _dot
pure (pat, e)
defnOp <- rule $ uncurry DefnOp <$> symbolicPatternEqTerm
defn <- rule $ defnIf <|> defnFun <|> defnOp
abbreviationVerb <- rule $ AbbreviationVerb <$> var <*> verbVar <* (_iff <|> _if) <*> stmt <* _dot
abbreviationAdj <- rule $ AbbreviationAdj <$> var <* _is <*> adjVar <* (_iff <|> _if) <*> stmt <* _dot
abbreviationNoun <- rule $ AbbreviationNoun <$> var <* _is <* _an <*> nounVar <* (_iff <|> _if) <*> stmt <* _dot
abbreviationRel <- rule $ AbbreviationRel <$> (beginMath *> varSymbol) <*> relator <*> varSymbol <* endMath <* (_iff <|> _if) <*> stmt <* _dot
abbreviationFun <- rule $ AbbreviationFun <$> (_the *> funVar) <* (_is <|> _denotes) <*> term <* _dot
abbreviationEq <- rule $ uncurry AbbreviationEq <$> symbolicPatternEqTerm
abbreviation <- rule $ (abbreviationVerb <|> abbreviationAdj <|> abbreviationNoun <|> abbreviationRel <|> abbreviationFun <|> abbreviationEq)
datatypeFin <- rule $ DatatypeFin <$> fmap fst (_an *> noun) <*> (_is *> _oneOf *> orList2 (math cmd) <* _dot)
datatype <- rule datatypeFin
unconditionalIntro <- rule $ IntroRule [] <$> math formula
conditionalIntro <- rule $ IntroRule <$> (_if *> andList1_ (math formula)) <* _comma <* _then <*> math formula
inductiveIntro <- rule $ (unconditionalIntro <|> conditionalIntro) <* _dot
inductiveDomain <- rule $ math $ (,) <$> symbolicPattern <* _subseteq <*> expr
inductiveHead <- rule $ _define *> inductiveDomain <* optional _inductively <* optional _asFollows <* _dot
inductive <- rule $ uncurry Inductive <$> inductiveHead <*> enumerated1 inductiveIntro
signatureAdj <- rule $ SignatureAdj <$> var <* _can <* _be <*> adjOf lexicon var
symbolicPattern <- symbolicPatternOf ops varSymbol
signatureSymbolic <- rule $ SignatureSymbolic <$> math symbolicPattern <* _is <* _an <*> nounPhrase
signature <- rule $ (,) <$> asms <* optional _then <*> (signatureAdj <|> signatureSymbolic) <* _dot
structFix <- rule do
beginMath
rawCmd <- cmd
endMath
pure (StructSymbol rawCmd)
structDefn <- rule $ do
_an
~(structPhrase, structLabel) <- structNoun
_extends
structParents <- andList1_ (_an *> structNounNameless)
maybeFixes <- optional (_equipped *> enumerated structFix)
structAssumes <- (_suchThat *> enumeratedMarked (stmt <* _dot)) <|> ([] <$ _dot)
pure StructDefn
{ structPhrase = structPhrase
, structLabel = structLabel
, structParents = structParents
, structFixes = maybeFixes ?? []
, structAssumes = structAssumes
}
justificationSet <- rule $ JustificationSetExt <$ _bySetExt
justificationRef <- rule $ JustificationRef <$> (_by *> ref)
justificationLocal <- rule $ JustificationLocal <$ (_by *> (_assumption <|> _definition))
justification <- rule (justificationSet <|> justificationRef <|> justificationLocal <|> pure JustificationEmpty)
trivial <- rule $ Qed JustificationEmpty <$ _trivial <* _dot
omitted <- rule $ Omitted <$ _omitted <* _dot
qedJustified <- rule $ Qed <$> (_follows *> justification <* _dot)
qed <- rule $ qedJustified <|> trivial <|> omitted <|> pure (Qed JustificationEmpty)
let alignedEq = symbol "&=" <?> "\"&=\""
explanation <- rule $ (text justification) <|> pure JustificationEmpty
equationItem <- rule $ (,) <$> (alignedEq *> expr) <*> explanation
equations <- rule $ Equation <$> expr <*> (many1 equationItem)
let alignedIff = symbol "&" *> command "iff" <?> "\"&\\iff\""
biconditionalItem <- rule $ (,) <$> (alignedIff *> formula) <*> explanation
biconditionals <- rule $ Biconditionals <$> formula <*> (many1 biconditionalItem)
calc <- rule $ Calc <$> align (equations <|> biconditionals) <*> proof
caseOf <- rule $ command "caseOf" *> token InvisibleBraceL *> stmt <* _dot <* token InvisibleBraceR
byCases <- rule $ ByCase <$> env_ "byCase" (many1_ (Case <$> caseOf <*> proof))
byContradiction <- rule $ ByContradiction <$ _suppose <* _not <* _dot <*> proof
bySetInduction <- rule $ BySetInduction <$> proofBy (_in *> word "-induction" *> optional (word "on" *> term)) <*> proof
byOrdInduction <- rule $ ByOrdInduction <$> proofBy (word "transfinite" *> word "induction" *> proof)
assume <- rule $ Assume <$> (_suppose *> stmt <* _dot) <*> proof
fixSymbolic <- rule $ FixSymbolic <$> (_fix *> beginMath *> varSymbols) <*> maybeBounded <* endMath <* _dot <*> proof
fixSuchThat <- rule $ FixSuchThat <$> (_fix *> math varSymbols) <* _suchThat <*> stmt <* _dot <*> proof
fix <- rule $ fixSymbolic <|> fixSuchThat
takeVar <- rule $ TakeVar <$> (_take *> beginMath *> varSymbols) <*> maybeBounded <* endMath <* _suchThat <*> stmt <*> justification <* _dot <*> proof
takeNoun <- rule $ TakeNoun <$> (_take *> _an *> (nounPhrase' <|> nounPhrasePl)) <*> justification <* _dot <*> proof
take <- rule $ takeVar <|> takeNoun
suffices <- rule $ Suffices <$> (_sufficesThat *> stmt) <*> (justification <* _dot) <*> proof
subclaim <- rule $ Subclaim <$> (_show *> stmt <* _dot) <*> env_ "subproof" proof <*> proof
have <- rule $ Have <$> optional (_since *> stmt <* _comma <* _have) <* optional _haveIntro <*> stmt <*> justification <* _dot <*> proof
define <- rule $ Define <$> (_let *> beginMath *> varSymbol <* _eq) <*> expr <* endMath <* _dot <*> proof
defineFunction <- rule $ DefineFunction <$> (_let *> beginMath *> varSymbol) <*> paren varSymbol <* _eq <*> expr <* endMath <* _for <* beginMath <*> varSymbol <* _in <*> expr <* endMath <* _dot <*> proof
-- Define $f $\fromTo{X}{Y} such that,
-- Define function $f: X \to Y$,
-- \begin{align}
-- &x \mapsto 3*x &,
-- &x \mapsto 4*k &, \forall k \in \N. x \in \Set{k}
-- \end{align}
--
-- Follwing is the definition right now.
-- Define function $f: X \to Y$ such that,
-- \begin{cases}
-- 1 & \text{if } x \in \mathbb{Q}\\
-- 0 & \text{if } x \in \mathbb{R}\setminus\mathbb{Q}
-- 3 & \text{else}
-- \end{cases}
functionDefineCase <- rule $ (,) <$> (optional _ampersand *> expr) <*> (_ampersand *> text _if *> formula)
defineFunctionMathy <- rule $ DefineFunctionMathy
<$> (_define *> beginMath *> varSymbol) -- Define $ f
<*> (_colon *> varSymbol) -- : 'var' \to 'var'
<*> (_to *> expr <* endMath <* _suchThat)
-- <*> (_suchThat *> align (many1 ((_ampersand *> varSymbol <* _mapsto) <*> exprApp <*> (_ampersand *> formula))))
-- <*> (_suchThat *> align (many1 (varSymbol <* exprApp <* formula)))
<*> (beginMath *> varSymbol) <*> (paren varSymbol <* _eq )
<*> cases (many1 functionDefineCase) <* endMath <* optional _dot
<*> proof
proof <- rule $ asum [byContradiction, byCases, bySetInduction, byOrdInduction, calc, subclaim, assume, fix, take, have, suffices, define, defineFunction, defineFunctionMathy, qed]
blockAxiom <- rule $ uncurry3 BlockAxiom <$> envPos "axiom" axiom
blockLemma <- rule $ uncurry3 BlockLemma <$> lemmaEnv lemma
blockProof <- rule $ uncurry BlockProof <$> envPos_ "proof" proof
blockDefn <- rule $ uncurry3 BlockDefn <$> envPos "definition" defn
blockAbbr <- rule $ uncurry3 BlockAbbr <$> envPos "abbreviation" abbreviation
blockData <- rule $ uncurry BlockData <$> envPos_ "datatype" datatype
blockInd <- rule $ uncurry3 BlockInductive <$> envPos "inductive" inductive
blockSig <- rule $ (\(p, (a, s)) -> BlockSig p a s) <$> envPos_ "signature" signature
blockStruct <- rule $ uncurry3 BlockStruct <$> envPos "struct" structDefn
block <- rule $ asum [blockAxiom, blockLemma, blockDefn, blockAbbr, blockData, blockInd, blockSig, blockStruct, blockProof]
-- Starting category.
pure block
proofBy :: Prod r Text (Located Token) a -> Prod r Text (Located Token) a
proofBy method = bracket $ word "proof" *> word "by" *> method
lemmaEnv :: Prod r Text (Located Token) a -> Prod r Text (Located Token) (SourcePos, Marker, a)
lemmaEnv content = asum
[ envPos "theorem" content
, envPos "lemma" content
, envPos "corollary" content
, envPos "claim" content
, envPos "proposition" content
]
-- | A disjunctive list with at least two items:
-- * 'a or b'
-- * 'a, b, or c'
-- * 'a, b, c, or d'
--
orList2 :: Prod r Text (Located Token) a -> Prod r Text (Located Token) (NonEmpty a)
orList2 item = ((:|) <$> item <*> many (_commaOr *> item))
<|> ((\i j -> i:|[j]) <$> item <* _or <*> item)
-- | Nonempty textual lists of the form "a, b, c, and d".
-- The final comma is mandatory, 'and' is not.
-- Also allows "a and b". Should therefore be avoided in contexts where
-- a logical conjunction would also be possible.
-- Currently also allows additional 'and's after each comma...
--
andList1 :: Prod r Text (Located Token) a -> Prod r Text (Located Token) (NonEmpty a)
andList1 item = ((:|) <$> item <*> many (_commaAnd *> item))
<|> ((\i j -> i:|[j]) <$> item <* _and <*> item)
-- | Like 'andList1', but drops the information about nonemptiness.
andList1_ :: Prod r Text (Located Token) a -> Prod r Text (Located Token) [a]
andList1_ item = NonEmpty.toList <$> andList1 item
commaList :: Prod r Text (Located Token) a -> Prod r Text (Located Token) (NonEmpty a)
commaList item = (:|) <$> item <*> many (_comma *> item)
-- | Like 'commaList', but drops the information about nonemptiness.
commaList_ :: Prod r Text (Located Token) a -> Prod r Text (Located Token) [a]
commaList_ item = NonEmpty.toList <$> commaList item
-- | Like 'commaList', but requires at least two items (and hence at least one comma).
commaList2 :: Prod r Text (Located Token) a -> Prod r Text (Located Token) (NonEmpty a)
commaList2 item = (:|) <$> item <* _comma <*> commaList_ item
enumerated :: Prod r Text (Located Token) a -> Prod r Text (Located Token) [a]
enumerated p = NonEmpty.toList <$> enumerated1 p
enumerated1 :: Prod r Text (Located Token) a -> Prod r Text (Located Token) (NonEmpty a)
enumerated1 p = begin "enumerate" *> many1 (command "item" *> p) <* end "enumerate" <?> "\"\\begin{enumerate} ...\""
enumeratedMarked :: Prod r Text (Located Token) a -> Prod r Text (Located Token) [(Marker, a)]
enumeratedMarked p = NonEmpty.toList <$> enumeratedMarked1 p
enumeratedMarked1 :: Prod r Text (Located Token) a -> Prod r Text (Located Token) (NonEmpty (Marker, a))
enumeratedMarked1 p = begin "enumerate" *> many1 ((,) <$> (command "item" *> label) <*> p) <* end "enumerate" <?> "\"\\begin{enumerate}\\item\\label{...}...\""
-- This function could be rewritten, so that it can be used directly in the grammar,
-- instead of with specialized variants.
--
phraseOf
:: (pat -> [a] -> b)
-> Lexicon
-> (Lexicon -> HashSet pat)
-> (pat -> LexicalPhrase)
-> Prod r Text (Located Token) a
-> Prod r Text (Located Token) b
phraseOf constr lexicon selector proj arg =
uncurry constr <$> asum (fmap make pats)
where
pats = HS.toList (selector lexicon)
make pat = (\args -> (pat, args)) <$> go (proj pat)
go = \case
Just w : ws -> token w *> go ws
Nothing : ws -> (:) <$> arg <*> go ws
[] -> pure []
adjLOf :: Lexicon -> Prod r Text (Located Token) arg -> Prod r Text (Located Token) (AdjLOf arg)
adjLOf lexicon arg = phraseOf AdjL lexicon (HM.keysSet . lexiconAdjLs) id arg <?> "a left adjective"
adjROf :: Lexicon -> Prod r Text (Located Token) arg -> Prod r Text (Located Token) (AdjROf arg)
adjROf lexicon arg = phraseOf AdjR lexicon (HM.keysSet . lexiconAdjRs) id arg <?> "a right adjective"
adjOf :: Lexicon -> Prod r Text (Located Token) arg -> Prod r Text (Located Token) (AdjOf arg)
adjOf lexicon arg = phraseOf Adj lexicon (HM.keysSet . lexiconAdjs) id arg <?> "an adjective"
verbOf
:: Lexicon
-> (SgPl LexicalPhrase -> LexicalPhrase)
-> Prod r Text (Located Token) a
-> Prod r Text (Located Token) (VerbOf a)
verbOf lexicon proj arg = phraseOf Verb lexicon (HM.keysSet . lexiconVerbs) proj arg
funOf
:: Lexicon
-> (SgPl LexicalPhrase -> LexicalPhrase)
-> Prod r Text (Located Token) a
-> Prod r Text (Located Token) (FunOf a)
funOf lexicon proj arg = phraseOf Fun lexicon (HM.keysSet . lexiconFuns) proj arg <?> "functional phrase"
-- | A noun with a @t VarSymbol@ as name(s).
nounOf
:: Lexicon
-> (SgPl LexicalPhrase -> LexicalPhrase)
-> Prod r Text (Located Token) arg
-> Prod r Text (Located Token) (t VarSymbol)
-> Prod r Text (Located Token) (NounOf arg, t VarSymbol)
nounOf lexicon proj arg vars =
(\(args1, xs, args2, pat) -> (Noun pat (args1 <> args2), xs)) <$> asum (fmap make pats) <?> "a noun"
where
pats = HM.keys (lexiconNouns lexicon)
make pat =
let (pat1, pat2) = splitOnVariableSlot (proj pat)
in (\args1 xs args2 -> (args1, xs, args2, pat)) <$> go pat1 <*> vars <*> go pat2
go = \case
Just w : ws -> token w *> go ws
Nothing : ws -> (:) <$> arg <*> go ws
[] -> pure []
structNounOf
:: Lexicon
-> (SgPl LexicalPhrase -> LexicalPhrase)
-> Prod r Text (Located Token) arg
-> Prod r Text (Located Token) name
-> Prod r Text (Located Token) (StructPhrase, name)
structNounOf lexicon proj arg name =
(\(_args1, xs, _args2, pat) -> (pat, xs)) <$> asum (fmap make pats) <?> "a structure noun"
where
pats = HM.keys (lexiconStructNouns lexicon)
make pat =
let (pat1, pat2) = splitOnVariableSlot (proj pat)
in (\args1 xs args2 -> (args1, xs, args2, pat)) <$> go pat1 <*> name <*> go pat2
go = \case
Just w : ws -> token w *> go ws
Nothing : ws -> (:) <$> arg <*> go ws
[] -> pure []
symbolicPatternOf
:: forall r. [[(Holey (Prod r Text (Located Token) Token), Associativity)]]
-> Prod r Text (Located Token) VarSymbol
-> Grammar r (Prod r Text (Located Token) SymbolPattern)
symbolicPatternOf ops varSymbol = rule $ asum
[ go op
| ops' <- ops
, (op, _assoc) <- ops'
] <?> "a symbolic pattern"
where
go :: Holey (Prod r Text (Located Token) Token) -> Prod r Text (Located Token) SymbolPattern
go [] = pure $ SymbolPattern [] []
go (head : tail) = case head of
Just symb -> (\s (SymbolPattern op vs) -> SymbolPattern (Just s : op) vs) <$> symb <*> go tail
Nothing -> (\v (SymbolPattern op vs) -> SymbolPattern (Nothing : op) (v : vs)) <$> varSymbol <*> go tail
makeNounPhrase
:: [AdjL]
-> (Noun, t VarSymbol)
-> [AdjR]
-> Maybe Stmt
-> NounPhrase t
makeNounPhrase ls (n, vs) rs ms = NounPhrase ls n vs rs ms
begin, end :: Text -> Prod r Text (Located Token) SourcePos
begin kind = tokenPos (BeginEnv kind) <?> ("\"\\begin{" <> kind <> "}\"")
end kind = tokenPos (EndEnv kind) <?> ("\"\\end{" <> kind <> "}\"")
-- | Surround a production rule @body@ with an environment of a certain @kind@ requiring a marker specified in a @\\label@.
-- Ignores the optional title after the beginning of the environment.
envPos :: Text -> Prod r Text (Located Token) a -> Prod r Text (Located Token) (SourcePos, Marker, a)
envPos kind body = do
p <- begin kind <?> ("start of a \"" <> kind <> "\" environment")
optional title
m <- label
a <- body <* end kind
pure (p, m, a)
where
title :: Prod r Text (Located Token) [Token]
title = bracket (many (unLocated <$> satisfy (\ltok -> unLocated ltok /= BracketR)))
-- 'env_' is like 'env', but without allowing titles.
--
envPos_ :: Text -> Prod r Text (Located Token) a -> Prod r Text (Located Token) (SourcePos, a)
envPos_ kind body = (,) <$> begin kind <*> (optional label *> body) <* end kind
env_ :: Text -> Prod r Text (Located Token) a -> Prod r Text (Located Token) a
env_ kind body = begin kind *> optional label *> body <* end kind
-- | A label specifying a marker for referencing via /@\\label{...}@/. Returns the marker text.
label :: Prod r Text (Located Token) Marker
label = label_ <?> "\"\\label{...}\""
where
label_ = terminal \ltok -> case unLocated ltok of
Label m -> Just (Marker m)
_tok -> Nothing
-- | A reference via /@\\ref{...}@/. Returns the markers as text.
ref :: Prod r Text (Located Token) (NonEmpty Marker)
ref = terminal \ltok -> case unLocated ltok of
Ref ms -> Just (Marker <$> ms)
_tok -> Nothing
math :: Prod r Text (Located Token) a -> Prod r Text (Located Token) a
math body = beginMath *> body <* endMath
text :: Prod r Text (Located Token) a -> Prod r Text (Located Token) a
text body = begin "text" *> body <* end "text" <?> "\"\\text{...}\""
beginMath, endMath :: Prod r Text (Located Token) SourcePos
beginMath = begin "math" <?> "start of a formula, e.g. \"$\""
endMath = end "math" <?> "end of a formula, e.g. \"$\""
paren :: Prod r Text (Located Token) a -> Prod r Text (Located Token) a
paren body = token ParenL *> body <* token ParenR <?> "\"(...)\""
bracket :: Prod r Text (Located Token) a -> Prod r Text (Located Token) a
bracket body = token BracketL *> body <* token BracketR <?> "\"[...]\""
brace :: Prod r Text (Located Token) a -> Prod r Text (Located Token) a
brace body = token VisibleBraceL *> body <* token VisibleBraceR <?> "\"\\{...\\}\""
group :: Prod r Text (Located Token) a -> Prod r Text (Located Token) a
group body = token InvisibleBraceL *> body <* token InvisibleBraceR <?> "\"{...}\""
align :: Prod r Text (Located Token) a -> Prod r Text (Located Token) a
align body = begin "align*" *> body <* end "align*"
cases :: Prod r Text (Located Token) a -> Prod r Text (Located Token) a
cases body = begin "cases" *> body <* end "cases"
maybeVarToken :: Located Token -> Maybe VarSymbol
maybeVarToken ltok = case unLocated ltok of
Variable x -> Just (NamedVar x)
_tok -> Nothing
maybeWordToken :: Located Token -> Maybe Text
maybeWordToken ltok = case unLocated ltok of
Word n -> Just n
_tok -> Nothing
maybeIntToken :: Located Token -> Maybe Int
maybeIntToken ltok = case unLocated ltok of
Integer n -> Just n
_tok -> Nothing
maybeCmdToken :: Located Token -> Maybe Text
maybeCmdToken ltok = case unLocated ltok of
Command n -> Just n
_tok -> Nothing
structSymbol :: StructSymbol -> Prod r Text (Located Token) StructSymbol
structSymbol s@(StructSymbol c) = terminal \ltok -> case unLocated ltok of
Command c' | c == c' -> Just s
_ -> Nothing
-- | Tokens that are allowed to appear in labels of environments.
maybeTagToken :: Located Token -> Maybe Text
maybeTagToken ltok = case unLocated ltok of
Symbol "'" ->Just "'"
Symbol "-" -> Just ""
_ -> maybeWordToken ltok
token :: Token -> Prod r Text (Located Token) Token
token tok = terminal maybeToken <?> tokToText tok
where
maybeToken ltok = case unLocated ltok of
tok' | tok == tok' -> Just tok
_ -> Nothing
tokenPos :: Token -> Prod r Text (Located Token) SourcePos
tokenPos tok = terminal maybeToken <?> tokToText tok
where
maybeToken ltok = case unLocated ltok of
tok' | tok == tok' -> Just (startPos ltok)
_ -> Nothing
|