1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
|
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
-- | Data types for the internal (semantic) syntax tree.
module Syntax.Internal
( module Syntax.Internal
, module Syntax.Abstract
, module Syntax.LexicalPhrase
, module Syntax.Token
) where
import Base
import Syntax.Lexicon (pattern PairSymbol, pattern ConsSymbol)
import Syntax.LexicalPhrase (LexicalPhrase, SgPl(..), unsafeReadPhrase, unsafeReadPhraseSgPl)
import Syntax.Token (Token(..))
import Syntax.Abstract
( Chain(..)
, Connective(..)
, VarSymbol(..)
, FunctionSymbol
, RelationSymbol
, StructSymbol (..)
, Relation
, VarSymbol(..)
, PropositionalConstant(..)
, StructPhrase
, Justification(..)
, Marker(..)
, pattern CarrierSymbol, pattern ConsSymbol
)
import Bound
import Bound.Scope
import Data.Deriving (deriveShow1, deriveEq1, deriveOrd1)
import Data.Hashable.Lifted
import Data.HashMap.Strict qualified as HM
import Data.Maybe
import Data.Set qualified as Set
import Data.List qualified as List
import Data.List.NonEmpty qualified as NonEmpty
import Text.Megaparsec.Pos (SourcePos)
-- | 'Symbol's can be used as function and relation symbols.
data Symbol
= SymbolMixfix FunctionSymbol
| SymbolFun (SgPl LexicalPhrase)
| SymbolInteger Int
| SymbolPredicate Predicate
deriving (Show, Eq, Ord, Generic, Hashable)
data Predicate
= PredicateAdj LexicalPhrase
| PredicateVerb (SgPl LexicalPhrase)
| PredicateNoun (SgPl LexicalPhrase) -- ^ /@\<...\> is a \<...\>@/.
| PredicateRelation RelationSymbol
| PredicateSymbol Text
| PredicateNounStruct (SgPl LexicalPhrase) -- ^ /@\<...\> is a \<...\>@/.
deriving (Show, Eq, Ord, Generic, Hashable)
data Quantifier
= Universally
| Existentially
deriving (Show, Eq, Ord, Generic, Hashable)
type Formula = Term
type Term = Expr
type Expr = ExprOf VarSymbol
-- | Internal higher-order expressions.
data ExprOf a
= TermVar a
-- ^ Fresh constants disjoint from all user-named identifiers.
-- These can be used to eliminate higher-order constructs.
--
| TermSymbol Symbol [ExprOf a]
-- ^ Application of a symbol (including function and predicate symbols).
| TermSymbolStruct StructSymbol (Maybe (ExprOf a))
--
| Apply (ExprOf a) (NonEmpty (ExprOf a))
-- ^ Higher-order application.
--
| TermSep VarSymbol (ExprOf a) (Scope () ExprOf a)
-- ^ Set comprehension using seperation, e.g.: /@{ x ∈ X | P(x) }@/.
--
| Iota VarSymbol (Scope () ExprOf a)
-- ^ Definite descriptor.
--
| ReplacePred VarSymbol VarSymbol (ExprOf a) (Scope ReplacementVar ExprOf a)
-- ^ Replacement for single-valued predicates. The concrete syntax for these
-- syntactically requires a bounded existential quantifier in the condition:
--
-- /@$\\{ y | \\exists x\\in A. P(x,y) \\}$@/
--
-- In definitions the single-valuedness of @P@ becomes a proof obligation.
-- In other cases we could instead add it as constraint
--
-- /@$b\\in \\{ y | \\exists x\\in A. P(x,y) \\}$@/
-- /@iff@/
-- /@$\\exists x\\in A. P(x,y)$ and $P$ is single valued@/
--
--
| ReplaceFun (NonEmpty (VarSymbol, ExprOf a)) (Scope VarSymbol ExprOf a) (Scope VarSymbol ExprOf a)
-- ^ Set comprehension using functional replacement,
-- e.g.: /@{ f(x, y) | x ∈ X; y ∈ Y; P(x, y) }@/.
-- The list of pairs gives the domains, the integers in the scope point to list indices.
-- The first scope is the lhs, the optional scope can be used for additional constraints
-- on the variables (i.e. implicit separation over the product of the domains).
-- An out-of-bound index is an error, since otherwise replacement becomes unsound.
--
| Connected Connective (ExprOf a) (ExprOf a)
| Lambda (Scope VarSymbol ExprOf a)
| Quantified Quantifier (Scope VarSymbol ExprOf a)
| PropositionalConstant PropositionalConstant
| Not (ExprOf a)
deriving (Functor, Foldable, Traversable)
data ReplacementVar = ReplacementDomVar | ReplacementRangeVar deriving (Show, Eq, Ord, Generic, Hashable)
makeBound ''ExprOf
deriveShow1 ''ExprOf
deriveEq1 ''ExprOf
deriveOrd1 ''ExprOf
deriving instance Show a => Show (ExprOf a)
deriving instance Eq a => Eq (ExprOf a)
deriving instance Ord a => Ord (ExprOf a)
deriving instance Generic (ExprOf a)
deriving instance Generic1 ExprOf
deriving instance Hashable1 ExprOf
deriving instance Hashable a => Hashable (ExprOf a)
abstractVarSymbol :: VarSymbol -> ExprOf VarSymbol -> Scope VarSymbol ExprOf VarSymbol
abstractVarSymbol x = abstract (\y -> if x == y then Just x else Nothing)
abstractVarSymbols :: Foldable t => t VarSymbol -> ExprOf VarSymbol -> Scope VarSymbol ExprOf VarSymbol
abstractVarSymbols xs = abstract (\y -> if y `elem` xs then Just y else Nothing)
-- | Use the given set of in scope structures to cast them to their carriers
-- when occurring on the rhs of the element relation.
-- Use the given 'Map' to annotate (unannotated) structure operations
-- with the most recent inscope appropriate label.
annotateWith :: Set VarSymbol -> HashMap StructSymbol VarSymbol -> Formula -> Formula
annotateWith = go
where
go :: (Ord a) => Set a -> HashMap StructSymbol a -> ExprOf a -> ExprOf a
go labels ops = \case
TermSymbolStruct symb Nothing ->
TermSymbolStruct symb (TermVar <$> HM.lookup symb ops)
e@TermSymbolStruct{} ->
e
a `IsElementOf` TermVar x | x `Set.member` labels ->
go labels ops a `IsElementOf` TermSymbolStruct CarrierSymbol (Just (TermVar x))
Not a ->
Not (go labels ops a)
Connected conn a b ->
Connected conn (go labels ops a) (go labels ops b)
Quantified quant body ->
Quantified quant (toScope (go (Set.map F labels) (F <$> ops) (fromScope body)))
e@TermVar{} -> e
TermSymbol symb args ->
TermSymbol symb (go labels ops <$> args)
Apply e1 args ->
Apply (go labels ops e1) (go labels ops <$> args)
TermSep vs e scope ->
TermSep vs (go labels ops e) (toScope (go (Set.map F labels) (F <$> ops) (fromScope scope)))
Iota x body ->
Iota x (toScope (go (Set.map F labels) (F <$> ops) (fromScope body)))
ReplacePred y x xB scope ->
ReplacePred y x (go labels ops xB) (toScope (go (Set.map F labels) (F <$> ops) (fromScope scope)))
ReplaceFun bounds ap cond ->
ReplaceFun
(fmap (\(x, e) -> (x, go labels ops e)) bounds)
(toScope (go (Set.map F labels) (F <$> ops) (fromScope ap)))
(toScope (go (Set.map F labels) (F <$> ops) (fromScope cond)))
Lambda body ->
Lambda (toScope (go (Set.map F labels) (F <$> ops) (fromScope body)))
e@PropositionalConstant{} -> e
containsHigherOrderConstructs :: ExprOf a -> Bool
containsHigherOrderConstructs = \case
TermSep {} -> True
Iota{} -> True
ReplacePred{}-> True
ReplaceFun{}-> True
Lambda{} -> True
Apply{} -> False -- FIXME: this is a lie in general; we need to add sortchecking to determine this.
TermVar{} -> False
PropositionalConstant{} -> False
TermSymbol _ es -> any containsHigherOrderConstructs es
Not e -> containsHigherOrderConstructs e
Connected _ e1 e2 -> containsHigherOrderConstructs e1 || containsHigherOrderConstructs e2
Quantified _ scope -> containsHigherOrderConstructs (fromScope scope)
TermSymbolStruct _ _ -> False
pattern TermOp :: FunctionSymbol -> [ExprOf a] -> ExprOf a
pattern TermOp op es = TermSymbol (SymbolMixfix op) es
pattern TermConst :: Token -> ExprOf a
pattern TermConst c = TermOp [Just c] []
pattern TermPair :: ExprOf a -> ExprOf a -> ExprOf a
pattern TermPair e1 e2 = TermOp PairSymbol [e1, e2]
pattern Atomic :: Predicate -> [ExprOf a] -> ExprOf a
pattern Atomic symbol args = TermSymbol (SymbolPredicate symbol) args
pattern FormulaAdj :: ExprOf a -> LexicalPhrase -> [ExprOf a] -> ExprOf a
pattern FormulaAdj e adj es = Atomic (PredicateAdj adj) (e:es)
pattern FormulaVerb :: ExprOf a -> SgPl LexicalPhrase -> [ExprOf a] -> ExprOf a
pattern FormulaVerb e verb es = Atomic (PredicateVerb verb) (e:es)
pattern FormulaNoun :: ExprOf a -> SgPl LexicalPhrase -> [ExprOf a] -> ExprOf a
pattern FormulaNoun e noun es = Atomic (PredicateNoun noun) (e:es)
relationNoun :: Expr -> Formula
relationNoun arg = FormulaNoun arg (unsafeReadPhraseSgPl "relation[/s]") []
rightUniqueAdj :: Expr -> Formula
rightUniqueAdj arg = FormulaAdj arg (unsafeReadPhrase "right-unique") []
-- | Untyped quantification.
pattern Forall, Exists :: Scope VarSymbol ExprOf a -> ExprOf a
pattern Forall scope = Quantified Universally scope
pattern Exists scope = Quantified Existentially scope
makeForall, makeExists :: Foldable t => t VarSymbol -> Formula -> Formula
makeForall xs e = Quantified Universally (abstractVarSymbols xs e)
makeExists xs e = Quantified Existentially (abstractVarSymbols xs e)
instantiateSome :: NonEmpty VarSymbol -> Scope VarSymbol ExprOf VarSymbol -> Scope VarSymbol ExprOf VarSymbol
instantiateSome xs scope = toScope (instantiateEither inst scope)
where
inst (Left x) | x `elem` xs = TermVar (F x)
inst (Left b) = TermVar (B b)
inst (Right fv) = TermVar (F fv)
-- | Bind all free variables not occuring in the given set universally
forallClosure :: Set VarSymbol -> Formula -> Formula
forallClosure xs phi = if isClosed phi
then phi
else Quantified Universally (abstract isNamedVar phi)
where
isNamedVar :: VarSymbol -> Maybe VarSymbol
isNamedVar x = if x `Set.member` xs then Nothing else Just x
freeVars :: ExprOf VarSymbol -> Set VarSymbol
freeVars = Set.fromList . toList
pattern And :: ExprOf a -> ExprOf a -> ExprOf a
pattern And e1 e2 = Connected Conjunction e1 e2
pattern Or :: ExprOf a -> ExprOf a -> ExprOf a
pattern Or e1 e2 = Connected Disjunction e1 e2
pattern Implies :: ExprOf a -> ExprOf a -> ExprOf a
pattern Implies e1 e2 = Connected Implication e1 e2
pattern Iff :: ExprOf a -> ExprOf a -> ExprOf a
pattern Iff e1 e2 = Connected Equivalence e1 e2
pattern Xor :: ExprOf a -> ExprOf a -> ExprOf a
pattern Xor e1 e2 = Connected ExclusiveOr e1 e2
pattern Bottom :: ExprOf a
pattern Bottom = PropositionalConstant IsBottom
pattern Top :: ExprOf a
pattern Top = PropositionalConstant IsTop
pattern Relation :: RelationSymbol -> [ExprOf a] -> ExprOf a
pattern Relation rel es = Atomic (PredicateRelation rel) es
-- | Membership.
pattern IsElementOf :: ExprOf a -> ExprOf a -> ExprOf a
pattern IsElementOf e1 e2 = Atomic (PredicateRelation (Command "in")) (e1 : [e2])
-- | Membership.
pattern IsNotElementOf :: ExprOf a -> ExprOf a -> ExprOf a
pattern IsNotElementOf e1 e2 = Not (IsElementOf e1 e2)
-- | Subset relation (non-strict).
pattern IsSubsetOf :: ExprOf a -> ExprOf a -> ExprOf a
pattern IsSubsetOf e1 e2 = Atomic (PredicateRelation (Command "subseteq")) (e1 : [e2])
-- | Ordinal predicate.
pattern IsOrd :: ExprOf a -> ExprOf a
pattern IsOrd e1 = Atomic (PredicateNoun (SgPl [Just "ordinal"] [Just "ordinals"])) [e1]
-- | Equality.
pattern Equals :: ExprOf a -> ExprOf a -> ExprOf a
pattern Equals e1 e2 = Atomic (PredicateRelation (Symbol "=")) (e1 : [e2])
-- | Disequality.
pattern NotEquals :: ExprOf a -> ExprOf a -> ExprOf a
pattern NotEquals e1 e2 = Atomic (PredicateRelation (Command "neq")) (e1 : [e2])
pattern EmptySet :: ExprOf a
pattern EmptySet = TermSymbol (SymbolMixfix [Just (Command "emptyset")]) []
makeConjunction :: [ExprOf a] -> ExprOf a
makeConjunction = \case
[] -> Top
es -> List.foldl1' And es
makeDisjunction :: [ExprOf a] -> ExprOf a
makeDisjunction = \case
[] -> Bottom
es -> List.foldl1' Or es
makeIff :: [ExprOf a] -> ExprOf a
makeIff = \case
[] -> Bottom
es -> List.foldl1' Iff es
makeXor :: [ExprOf a] -> ExprOf a
makeXor = \case
[] -> Bottom
es -> List.foldl1' Xor es
finiteSet :: NonEmpty (ExprOf a) -> ExprOf a
finiteSet = foldr cons EmptySet
where
cons x y = TermSymbol (SymbolMixfix ConsSymbol) [x, y]
isPositive :: ExprOf a -> Bool
isPositive = \case
Not _ -> False
_ -> True
dual :: ExprOf a -> ExprOf a
dual = \case
Not f -> f
f -> Not f
-- | Local assumptions.
data Asm
= Asm Formula
| AsmStruct VarSymbol StructPhrase
deriving instance Show Asm
deriving instance Eq Asm
deriving instance Ord Asm
data StructAsm
= StructAsm VarSymbol StructPhrase
data Axiom = Axiom [Asm] Formula
deriving instance Show Axiom
deriving instance Eq Axiom
deriving instance Ord Axiom
data Lemma = Lemma [Asm] Formula
deriving instance Show Lemma
deriving instance Eq Lemma
deriving instance Ord Lemma
data Defn
= DefnPredicate [Asm] Predicate (NonEmpty VarSymbol) Formula
| DefnFun [Asm] (SgPl LexicalPhrase) [VarSymbol] Term
| DefnOp FunctionSymbol [VarSymbol] Term
deriving instance Show Defn
deriving instance Eq Defn
deriving instance Ord Defn
data Inductive = Inductive
{ inductiveSymbol :: FunctionSymbol
, inductiveParams :: [VarSymbol]
, inductiveDomain :: Expr
, inductiveIntros :: NonEmpty IntroRule
}
deriving (Show, Eq, Ord)
data IntroRule = IntroRule
{ introConditions :: [Formula] -- The inductively defined set may only appear as an argument of monotone operations on the rhs.
, introResult :: Formula -- TODO Refine.
}
deriving (Show, Eq, Ord)
data Proof
= Omitted
-- ^ Ends a proof without further verification.
-- This results in a “gap” in the formalization.
| Qed Justification
-- ^ Ends of a proof, leaving automation to discharge the current goal using the given justification.
| ByContradiction Proof
-- ^ Take the dual of the current goal as an assumption and
-- set the goal to absurdity.
| BySetInduction (Maybe Term) Proof
-- ^ ∈-induction.
| ByOrdInduction Proof
-- ^ Transfinite induction for ordinals.
| Assume Formula Proof
-- ^ Simplify goals that are implications or disjunctions.
| Fix (NonEmpty VarSymbol) Formula Proof
-- ^ Simplify universal goals (with an optional bound or such that statement)
| Take (NonEmpty VarSymbol) Formula Justification Proof
-- ^ Use existential assumptions.
| Suffices Formula Justification Proof
| ByCase [Case]
-- ^ Proof by case. Disjunction of the case hypotheses 'Case'
-- must hold for this step to succeed. Each case starts a subproof,
-- keeping the same goal but adding the case hypothesis as an assumption.
-- Often this will be a classical split between /@P@/ and /@not P@/, in
-- which case the proof that /@P or not P@/ holds is easy.
--
| Have Formula Justification Proof
-- ^ An affirmation, e.g.: /@We have \<stmt\> by \<ref\>@/.
--
| Calc Calc Proof
| Subclaim Formula Proof Proof
-- ^ A claim is a sublemma with its own proof:
--
-- /@Show \<goal stmt\>. \<steps\>. \<continue other proof\>.@/
--
-- A successful first proof adds the claimed formula as an assumption
-- for the remaining proof.
--
| Define VarSymbol Term Proof
| DefineFunction VarSymbol VarSymbol Term Term Proof
| DefineFunctionLocal VarSymbol VarSymbol VarSymbol Term (NonEmpty (Term, Formula)) Proof
deriving instance Show Proof
deriving instance Eq Proof
deriving instance Ord Proof
-- | A case of a case split.
data Case = Case
{ caseOf :: Formula
, caseProof :: Proof
}
deriving instance Show Case
deriving instance Eq Case
deriving instance Ord Case
-- | See 'Syntax.Abstract.Calc'.
data Calc
= Equation Term (NonEmpty (Term, Justification))
| Biconditionals Term (NonEmpty (Term, Justification))
deriving instance Show Calc
deriving instance Eq Calc
deriving instance Ord Calc
calcResult :: Calc -> ExprOf VarSymbol
calcResult = \case
Equation e eqns -> e `Equals` fst (NonEmpty.last eqns)
Biconditionals phi phis -> phi `Iff` fst (NonEmpty.last phis)
calculation :: Calc -> [(ExprOf VarSymbol, Justification)]
calculation = \case
Equation e1 eqns@((e2, jst) :| _) -> (e1 `Equals` e2, jst) : collectEquations (toList eqns)
Biconditionals p1 ps@((p2, jst) :| _) -> (p1 `Iff` p2, jst) : collectBiconditionals (toList ps)
collectEquations :: [(ExprOf a, b)] -> [(ExprOf a, b)]
collectEquations = \case
(e1, _) : eqns'@((e2, jst) : _) -> (e1 `Equals` e2, jst) : collectEquations eqns'
_ -> []
collectBiconditionals :: [(ExprOf a, b)] -> [(ExprOf a, b)]
collectBiconditionals = \case
(p1, _) : ps@((p2, jst) : _) -> (p1 `Iff` p2, jst) : collectEquations ps
_ -> []
newtype Datatype
= DatatypeFin (NonEmpty Text)
deriving (Show, Eq, Ord)
data Signature
= SignaturePredicate Predicate (NonEmpty VarSymbol)
| SignatureFormula Formula -- TODO: Reconsider, this is pretty lossy.
deriving instance Show Signature
deriving instance Eq Signature
deriving instance Ord Signature
data StructDefn = StructDefn
{ structPhrase :: StructPhrase
-- ^ The noun phrase naming the structure, e.g.: @partial order@ or @abelian group@.
, structParents :: Set StructPhrase
, structDefnLabel :: VarSymbol
, structDefnFixes :: Set StructSymbol
-- ^ List of commands representing operations,
-- e.g.: @\\contained@ or @\\inv@. These are used as default operation names
-- in instantiations such as @Let $G$ be a group@.
-- The commands should be set up to handle an optional struct label
-- which would typically be rendered as a sub- or superscript, e.g.:
-- @\\contained[A]@ could render as ”⊑ᴬ“.
-- --
, structDefnAssumes :: [(Marker, Formula)]
-- ^ The assumption or axioms of the structure.
-- To be instantiate with the @structFixes@ of a given structure.
}
deriving instance Show StructDefn
deriving instance Eq StructDefn
deriving instance Ord StructDefn
data Abbreviation
= Abbreviation Symbol (Scope Int ExprOf Void)
deriving (Show, Eq, Ord)
data Block
= BlockAxiom SourcePos Marker Axiom
| BlockLemma SourcePos Marker Lemma
| BlockProof SourcePos Proof
| BlockDefn SourcePos Marker Defn
| BlockAbbr SourcePos Marker Abbreviation
| BlockStruct SourcePos Marker StructDefn
| BlockInductive SourcePos Marker Inductive
| BlockSig SourcePos [Asm] Signature
deriving (Show, Eq, Ord)
data Task = Task
{ taskDirectness :: Directness
, taskHypotheses :: [(Marker, Formula)] -- ^ No guarantees on order.
, taskConjectureLabel :: Marker
, taskConjecture :: Formula
} deriving (Show, Eq, Generic, Hashable)
-- | Indicates whether a given proof is direct or indirect.
-- An indirect proof (i.e. a proof by contradiction) may
-- cause an ATP to emit a warning about contradictory axioms.
-- When we know that the proof is indirect, we want to ignore
-- this warning. For relevance filtering we also want to know
-- what our actual goal is, so we keep the original conjecture.
data Directness
= Indirect Formula -- ^ The former conjecture.
| Direct
deriving (Show, Eq, Generic, Hashable)
isIndirect :: Task -> Bool
isIndirect task = case taskDirectness task of
Indirect _ -> True
Direct -> False
-- | Boolean contraction of a task.
contractionTask :: Task -> Task
contractionTask task = task
{ taskHypotheses = mapMaybe contract (taskHypotheses task)
, taskConjecture = contraction (taskConjecture task)
}
contract :: (Marker, Formula) -> Maybe (Marker, Formula)
contract (m, phi) = case contraction phi of
Top -> Nothing
phi' -> Just (m, phi')
-- | Full boolean contraction.
contraction :: ExprOf a -> ExprOf a
contraction = \case
Connected conn f1 f2 -> atomicContraction (Connected conn (contraction f1) (contraction f2))
Quantified quant scope -> atomicContraction (Quantified quant (hoistScope contraction scope))
Not f -> Not (contraction f)
f -> f
-- | Atomic boolean contraction.
atomicContraction :: ExprOf a -> ExprOf a
atomicContraction = \case
Top `Iff` f -> f
Bottom `Iff` f -> Not f
f `Iff` Top -> f
f `Iff` Bottom -> Not f
Top `Implies` f -> f
Bottom `Implies` _ -> Top
_ `Implies` Top -> Top
f `Implies` Bottom -> Not f
Top `And` f -> f
Bottom `And` _ -> Bottom
f `And` Top -> f
_ `And` Bottom -> Bottom
phi@(Quantified _quant scope) -> case unscope scope of
Top -> Top
Bottom -> Bottom
_ -> phi
Not Top -> Bottom
Not Bottom -> Top
f -> f
|