summaryrefslogtreecommitdiff
path: root/test/examples/no-reflexive-set.tex
blob: 78bd07c681360737f6a48a8c580d6e575189735a (plain)
1
2
3
4
5
6
7
8
9
10
11
\begin{proposition}\label{in_irrefl}
    For all sets $A$ we have $A\not\in A$.
\end{proposition}
\begin{proof}[Proof by \in-induction]
    %Let $B$ be a set.
    %Suppose $b\notin b$ for all $b\in B$.
    %Suppose $B\in B$.
    %But then
    %    $B\notin B$.
    Straightforward.
\end{proof}