blob: 4c2a8f2d811fe4c4263687c53b5a862a6dc3602a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
\begin{definition}\label{universal_set}
A set $V$ is universal iff
%every set is an element of $V$.
for all sets $x$ we have $x\in V$.
\end{definition}
\begin{theorem}\label{no_universal_set}
There exists no universal set.
\end{theorem}
\begin{proof}
Suppose not.
Take a universal set $V$.
Let $R = \{ x\in V \mid x\not\in x \}$.
Then $R\in R$ iff $R\not\in R$.
Contradiction.
\end{proof}
|