diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-09-05 16:13:04 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-09-05 16:13:04 +0200 |
| commit | 12f360a500d5edddf83afa121a5a08b6a6408815 (patch) | |
| tree | c568b5cf5f33af8cf5ea6ee6f77efd34af779325 | |
| parent | e1d55f672b063f9347c0c9718ae5cdca9a370dba (diff) | |
Precondtion failed in line 161 urysohn2.tex
Error:
zf: Precondition failed in encodeTerm, cannot encode terms with comprehensions directly: TermSep (NamedVar "n") (TermSymbol (SymbolMixfix [Just (Command "naturals")]) []) (Scope (TermSymbol (SymbolPredicate (PredicateRelation (Command "rless"))) [TermSymbol (SymbolInteger 1) [],TermVar (B ())]))
CallStack (from HasCallStack):
error, called at source/Encoding.hs:89:13 in zf-0.3.0.0-3mIpbM9y9fK3yXjxxoLDb2:Encoding
| -rw-r--r-- | library/topology/urysohn2.tex | 138 |
1 files changed, 133 insertions, 5 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex index 93819dc..396255e 100644 --- a/library/topology/urysohn2.tex +++ b/library/topology/urysohn2.tex @@ -100,17 +100,129 @@ %If $n$ is a natural number then $n$ is \in-transitive and every element of $n$ is \in-transitive. \end{proposition} +\begin{proposition}\label{natural_number_is_ordinal_for_all} + For all $n \in \naturals$ we have $n$ is a ordinal. +\end{proposition} + \begin{proposition}\label{zero_is_in_minimal} $\zero$ is an \in-minimal element of $\naturals$. \end{proposition} -\begin{proposition}\label{naturals_leq} - For all $n \in \naturals$ we have $\zero \leq n$. +\begin{proposition}\label{natural_rless_eq_precedes} + For all $n,m \in \naturals$ we have $n \precedes m$ iff $n \in m$. +\end{proposition} + +\begin{proposition}\label{naturals_precedes_suc} + For all $n \in \naturals$ we have $n \precedes \suc{n}$. +\end{proposition} + +\begin{proposition}\label{zero_is_empty} + There exists no $x$ such that $x \in \zero$. +\end{proposition} + +\begin{proposition}\label{one_is_positiv} + $1$ is positiv. +\end{proposition} + +\begin{proposition}\label{suc_of_positive_is_positive} + For all $n \in \naturals$ such that $n$ is positiv we have $\suc{n}$ is positiv. +\end{proposition} + +\begin{proposition}\label{naturals_are_positiv_besides_zero} + For all $n \in \naturals$ such that $n \neq \zero$ we have $n$ is positiv. +\end{proposition} +\begin{proof}[Proof by \in-induction on $n$] + Assume $n \in \naturals$. + \begin{byCase} + \caseOf{$n = \zero$.} Trivial. + \caseOf{$n \neq \zero$.} + Take $k \in \naturals$ such that $\suc{k} = n$. + \end{byCase} +\end{proof} + + + +\begin{proposition}\label{naturals_sum_eq_zero} + For all $n,m \in \naturals$ we have if $n+m = \zero$ then $n = m = \zero$. \end{proposition} \begin{proof} Omitted. \end{proof} +\begin{proposition}\label{no_natural_between_n_and_suc_n} + For all $n,m \in \naturals$ we have not $n < m < \suc{n}$. +\end{proposition} + +\begin{proposition}\label{naturals_rless_existence_of_lesser_natural} + For all $n \in \naturals$ we have for all $m \in \naturals$ such that $m < n$ there exist $k \in \naturals$ such that $m + k = n$. +\end{proposition} +\begin{proof}[Proof by \in-induction on $n$] + Assume $n \in \naturals$. + We show that $\naturals = (\{\zero, 1\} \union \{n \in \naturals \mid n > 1\})$. + \begin{subproof} + Trivial. + \end{subproof} + \begin{byCase} + \caseOf{$n = \zero$.} + + We show that for all $m \in \naturals$ such that $m < n$ we have there exist $k \in \naturals$ such that $m + k = n$. + \begin{subproof}[Proof by \in-induction on $m$] + Assume $m \in \naturals$. + \begin{byCase} + \caseOf{$m = \zero$.} + Trivial. + \caseOf{$m \neq \zero$.} + Trivial. + \end{byCase} + \end{subproof} + \caseOf{$n = 1$.} + Fix $m$. + For all $l \in \naturals$ we have If $l < 1$ then $l = \zero$. + Then $\zero + 1 = 1$. + \caseOf{$n > 1$.} + Take $l \in \naturals$ such that $\suc{l} = n$. + Omitted. + \end{byCase} +\end{proof} + + +\begin{proposition}\label{rless_eq_in_for_naturals} + For all $n,m \in \naturals$ such that $n < m$ we have $n \in m$. +\end{proposition} +\begin{proof} + We show that for all $n \in \naturals$ we have for all $m \in \naturals$ such that $m < n$ we have $m \in n$. + \begin{subproof}[Proof by \in-induction on $n$] + Assume $n \in \naturals$. + We show that for all $m \in \naturals$ such that$m < n$ we have $m \in n$. + \begin{subproof}[Proof by \in-induction on $m$] + Assume $m \in \naturals$. + %\begin{byCase} + % + %\end{byCase} + \end{subproof} + \end{subproof} + + %Fix $n \in \naturals$. + + %\begin{byCase} + % \caseOf{$n = \zero$.} + % For all $k \in \naturals$ we have $k = \zero$ or $\zero < k$. + % + % \caseOf{$n \neq \zero$.} + % Fix $m \in \naturals$. + % It suffices to show that $m \in n$. + %\end{byCase} + +\end{proof} + + + +\begin{proposition}\label{naturals_leq} + For all $n \in \naturals$ we have $\zero \leq n$. +\end{proposition} + + + \begin{proposition}\label{naturals_leq_on_suc} For all $n,m \in \naturals$ such that $m < \suc{n}$ we have $m \leq n$. \end{proposition} @@ -157,11 +269,27 @@ \end{subproof} We show that $\seq{\zero}{k} \union \{n\} \subseteq \seq{\zero}{n}$. \begin{subproof} + It suffices to show that for all $x \in \seq{\zero}{k} \union \{n\}$ we have $x \in \seq{\zero}{n}$. $k \leq n$ by \cref{naturals_subseteq_reals,suc_eq_plus_one,plus_one_order,subseteq}. $k \in n$. - $\seq{\zero}{k} = k$ by \cref{}. - We have $\seq{\zero}{k} \subseteq \seq{\zero}{n}$. - $n \in \seq{\zero}{n}$. + $\seq{\zero}{k} = \suc{k}$ by assumption. + $n \in \naturals$. + $\zero \leq n$. + $n \leq n$. + We have $n \in \seq{\zero}{n}$. + Therefore $\seq{\zero}{n}$ is inhabited. + Take $x$ such that $x \in \seq{\zero}{n}$. + Therefore $\zero \leq x \leq n$. + $x = n$ or $x < n$. + Then either $x = n$ or $x \leq k$. + Therefore $x \in \seq{\zero}{k}$ or $x = n$. + Fix $x$. + \begin{byCase} + \caseOf{$x \in \seq{\zero}{k}$.} + Trivial. + \caseOf{$x = n$.} + It suffices to show that $n \in \seq{\zero}{n}$. + \end{byCase} \end{subproof} Trivial. \end{subproof} |
