diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-24 11:43:29 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-24 11:43:29 +0200 |
| commit | 29027c9d2cdbdfe59e48b5aa28eb2d32d1a4c1f7 (patch) | |
| tree | 65a7689cc8ba001a7e914f8523fdc2c9e8c600c0 | |
| parent | d5b31ee7dc5992687f214d77e795bab53d5fe65d (diff) | |
naproch sty extension
| -rw-r--r-- | latex/naproche.sty | 10 | ||||
| -rw-r--r-- | latex/stdlib.tex | 2 | ||||
| -rw-r--r-- | library/topology/urysohn.tex | 33 | ||||
| -rw-r--r-- | library/topology/urysohn2.tex | 56 |
4 files changed, 87 insertions, 14 deletions
diff --git a/latex/naproche.sty b/latex/naproche.sty index 7ef2359..5ca673d 100644 --- a/latex/naproche.sty +++ b/latex/naproche.sty @@ -100,6 +100,7 @@ \newcommand{\memrel}[1]{{\in_{#1}}} \newcommand{\monusNat}{-_{\naturals}} \newcommand{\naturals}{\mathcal{N}} +\newcommand{\naturalsPlus}{\mathcal{N}_{+}} \newcommand{\notmeets}{\mathrel{\not\meets}} \newcommand{\pow}[1]{\fun{Pow}(#1)} \newcommand{\precedes}{<} @@ -133,6 +134,14 @@ \newcommand{\zero}{0} \newcommand{\one}{1} \newcommand{\rmul}{\cdot} +\newcommand{\inv}[1]{#1^{-1}} +\newcommand{\rfrac}[2]{\frac{#1}{#2}} +\newcommand{\rationals}{\mathcal{Q}} +\newcommand{\rminus}{-_{\mathcal{R}}} +\newcommand{\seq}[2]{\{#1, ... ,#2\}} +\newcommand{\indexx}[2]{index_{#1}(#2)} +\newcommand{\indexset}[2]{#1} + \newcommand\restrl[2]{{% we make the whole thing an ordinary symbol @@ -166,6 +175,7 @@ \newcommand{\closure}[2]{\fun{cl}_{#2}{#1}} \newcommand{\frontier}[2]{\fun{fr}_{#2}{#1}} \newcommand{\neighbourhoods}[2]{\textsf{N}_{#2}{#1}} +\newcommand{\neighbourhoodsSet}[2]{\textsf{N}_{SET #2}{#1}} \newcommand{\disconnections}[1]{\fun{Disconnections}{#1}} \newcommand{\teezero}{\ensuremath{T_0}} % Kolmogorov diff --git a/latex/stdlib.tex b/latex/stdlib.tex index dba42a2..2faa267 100644 --- a/latex/stdlib.tex +++ b/latex/stdlib.tex @@ -46,4 +46,6 @@ \input{../library/topology/basis.tex} \input{../library/topology/disconnection.tex} \input{../library/numbers.tex} + \input{../library/topology/urysohn.tex} + \input{../library/wunschzettel.tex} \end{document} diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index c3c72f0..b8a5fa5 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -504,26 +504,31 @@ The first tept will be a formalisation of chain constructions. -\begin{definition}\label{sequencetwo} - $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$. -\end{definition} - -\begin{proposition}\label{sequence_existence} - Suppose $N \subseteq \naturals$. - Suppose $M \subseteq \naturals$. - Suppose $N = M$. - Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo. -\end{proposition} -\begin{proof} - Let $f(x) = x$ for $x \in N$. - Let $Z=(N,f,M)$. -\end{proof} +%\begin{definition}\label{sequencetwo} +% $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$. +%\end{definition} +% +%\begin{proposition}\label{sequence_existence} +% Suppose $N \subseteq \naturals$. +% Suppose $M \subseteq \naturals$. +% Suppose $N = M$. +% Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo. +%\end{proposition} +%\begin{proof} +% Let $f(x) = x$ for $x \in N$. +% Let $Z=(N,f,M)$. +%\end{proof} %The proposition above and the definition prove false together with % ordinal_subseteq_unions, omega_is_an_ordinal, powerset_intro, in_irrefl + + + + + \begin{theorem}\label{urysohn} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex new file mode 100644 index 0000000..8e5261e --- /dev/null +++ b/library/topology/urysohn2.tex @@ -0,0 +1,56 @@ +\import{topology/topological-space.tex} +\import{topology/separation.tex} +\import{topology/continuous.tex} +\import{topology/basis.tex} +\import{numbers.tex} +\import{function.tex} +\import{set.tex} +\import{cardinal.tex} +\import{relation.tex} +\import{relation/uniqueness.tex} +\import{set/cons.tex} +\import{set/powerset.tex} +\import{set/fixpoint.tex} +\import{set/product.tex} + +\section{Urysohns Lemma} + + + +\begin{abbreviation}\label{urysohnspace} + $X$ is a urysohn space iff + $X$ is a topological space and + for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$ + we have there exist $A',B' \in \opens[X]$ + such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$. +\end{abbreviation} + + +\begin{definition}\label{intervalclosed} + $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$. +\end{definition} + + + + +\begin{theorem}\label{urysohn} + Let $X$ be a urysohn space. + Suppose $A,B \in \closeds{X}$. + Suppose $A \inter B$ is empty. + Suppose $\carrier[X]$ is inhabited. + There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ + and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous. +\end{theorem} +\begin{proof} + + + + + + Contradiction. + +\end{proof} + +\begin{theorem}\label{safe} + Contradiction. +\end{theorem} |
