summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-15 19:05:25 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-15 19:05:25 +0200
commit3ef20da08eda23db76d763a2c6c7ee416348a021 (patch)
tree25ece5c7b5260e542c58772e0031773a9214a722
parentb298295ac002785672a8b16dd09f9692d73f7a80 (diff)
Fix Assume Issue
At line 137 in real-topological-space.tex Can't use Fix at this point.
-rw-r--r--library/numbers.tex4
-rw-r--r--library/topology/real-topological-space.tex143
2 files changed, 143 insertions, 4 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index b7de307..73eefc8 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -718,7 +718,7 @@ Laws of the order on the reals
\end{proof}
\begin{lemma}\label{reals_minus}
- Assume $x,y \in \reals$. If $x \rminus y = \zero$ then $x=y$.
+ Assume $x,y \in \reals$. If $x - y = \zero$ then $x=y$.
\end{lemma}
\begin{proof}
Omitted.
@@ -803,7 +803,7 @@ Laws of the order on the reals
\end{definition}
\begin{definition}\label{realsplus}
- $\realsplus = \reals \setminus \realsminus$.
+ $\realsplus = \{r \in \reals \mid r > \zero\}$.
\end{definition}
\begin{definition}\label{epsilon_ball}
diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex
index db46732..8757ffb 100644
--- a/library/topology/real-topological-space.tex
+++ b/library/topology/real-topological-space.tex
@@ -21,6 +21,123 @@
$\carrier[\reals] = \reals$.
\end{axiom}
+\begin{lemma}\label{intervals_are_connected_in_reals}
+ Suppose $a,b \in \reals$.
+ Then for all $c \in \reals$ such that $a < c < b$ we have $c \in \intervalopen{a}{b}$.
+\end{lemma}
+
+\begin{lemma}\label{epsball_are_subset_reals_elem}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \reals$.
+\end{lemma}
+
+\begin{lemma}\label{intervalopen_iff}
+ Suppose $a,b,c \in \reals$.
+ Suppose $a < b$.
+ $c \in \intervalopen{a}{b}$ iff $a < c < b$.
+\end{lemma}
+
+\begin{lemma}\label{epsball_are_subseteq_reals_set}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then $\epsBall{x}{\epsilon} \subseteq \reals$.
+\end{lemma}
+
+\begin{lemma}\label{epsball_are_subset_reals_set}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then $\epsBall{x}{\epsilon} \subset \reals$.
+\end{lemma}
+
+\begin{lemma}\label{reals_order_minus_positiv}
+ Suppose $x,y \in \reals$.
+ Suppose $\zero < y$.
+ $x - y < x$.
+\end{lemma}
+
+\begin{lemma}\label{realsplus_bigger_zero}
+ For all $x \in \realsplus$ we have $\zero < x$.
+\end{lemma}
+
+\begin{lemma}\label{realsplus_in_reals}
+ For all $x \in \realsplus$ we have $x \in \reals$.
+\end{lemma}
+
+\begin{lemma}\label{epsball_are_inhabited}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then $\epsBall{x}{\epsilon}$ is inhabited.
+\end{lemma}
+\begin{proof}
+ $x < x + \epsilon$.
+ $x - \epsilon < x$.
+ $x \in \epsBall{x}{\epsilon}$.
+\end{proof}
+
+\begin{lemma}\label{reals_elem_inbetween}
+ For all $a,b \in \reals$ such that $a < b$ we have there exists $c \in \reals$ such that $a < c < b$.
+\end{lemma}
+
+\begin{lemma}\label{epsball_equal_openinterval}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then $\epsBall{x}{\epsilon} = \intervalopen{x - \epsilon}{x + \epsilon}$.
+\end{lemma}
+
+\begin{lemma}\label{minus_behavior1}
+ For all $x \in \reals$ we have $x - x = \zero$.
+\end{lemma}
+
+\begin{lemma}\label{minus_behavior2}
+ For all $x \in \reals$ we have $x + \neg{x} = \zero$.
+\end{lemma}
+
+\begin{lemma}\label{minus_behavior3}
+ For all $x \in \reals$ we have $\neg{x} = \zero - x$.
+\end{lemma}
+
+\begin{lemma}\label{reals_order_is_addition_with_positiv_number}
+ For all $x,y \in \reals$ such that $x < y$ we have there exists $z \in \realsplus$ such that $x + z = y$.
+\end{lemma}
+\begin{proof}
+ %Fix $x,y \in \reals$.
+\end{proof}
+
+\begin{lemma}\label{reals_order_is_transitive}
+ For all $x,y,z \in \reals$ such that $x < y$ and $y < z$ we have $x < z$.
+\end{lemma}
+
+\begin{lemma}\label{reals_order_plus_minus}
+ Suppose $a,b \in \reals$.
+ Suppose $\zero < b$.
+ Then $(a-b) < (a+b)$.
+\end{lemma}
+\begin{proof}
+ We show that $a < (a+b)$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+ We show that $(a-b) < a$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+\end{proof}
+
+\begin{lemma}\label{epsball_are_connected_in_reals}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then for all $c \in \reals$ such that $(x - \epsilon) < c < (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$.
+\end{lemma}
+\begin{proof}
+ $x - \epsilon \in \reals$.
+ $x + \epsilon \in \reals$.
+
+ It suffices to show that for all $c$ such that $c \in \reals \land (x - \epsilon) < c < (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$.
+ %Fix $c$ such that $c \in \reals \land (x - \epsilon) < c < (x + \epsilon)$.
+ %Suppose $(x - \epsilon) < c < (x + \epsilon)$.
+\end{proof}
+
\begin{theorem}\label{topological_basis_reals_is_prebasis}
$\topoBasisReals$ is a topological prebasis for $\reals$.
\end{theorem}
@@ -29,11 +146,21 @@
\begin{subproof}
It suffices to show that for all $x \in \unions{\topoBasisReals}$ we have $x \in \reals$.
Fix $x \in \unions{\topoBasisReals}$.
+ \begin{byCase}
+ \caseOf{$x = \emptyset$.}
+ Trivial.
+ \caseOf{$x \neq \emptyset$.}
+ There exists $U \in \topoBasisReals$ such that $x \in \topoBasisReals$.
+ Take $U \in \topoBasisReals$ such that $x \in \topoBasisReals$.
+
+ \end{byCase}
\end{subproof}
We show that $\reals \subseteq \unions{\topoBasisReals}$.
\begin{subproof}
It suffices to show that for all $x \in \reals$ we have $x \in \unions{\topoBasisReals}$.
Fix $x \in \reals$.
+ $\epsBall{x}{1} \in \topoBasisReals$.
+ Therefore $x \in \unions{\topoBasisReals}$.
\end{subproof}
\end{proof}
@@ -46,7 +173,15 @@
It suffices to show that for all $U \in B$ we have for all $V \in B$ we have for all $x$ such that $x \in U, V$ there exists $W\in B$ such that $x\in W\subseteq U, V$.
Fix $U \in B$.
Fix $V \in B$.
- Fix $x \in U, V$.
+ It suffices to show that for all $x \in U \inter V$ there exists $W\in B$ such that $x\in W\subseteq U, V$.
+ Fix $x \in U \inter V$.
+ \begin{byCase}
+ \caseOf{$U \inter V = \emptyset$.}
+ Trivial.
+ \caseOf{$U \inter V \neq \emptyset$.}
+ Then $U \inter V$ is inhabited.
+ %It suffices to show that
+ \end{byCase}
\end{proof}
\begin{axiom}\label{topological_space_reals}
@@ -86,4 +221,8 @@
\begin{proposition}\label{open_interval_is_open}
Suppose $a,b \in \reals$.
Then $\intervalopen{a}{b} \in \opens[\reals]$.
-\end{proposition} \ No newline at end of file
+\end{proposition}
+
+\begin{lemma}\label{safetwo}
+ Contradiction.
+\end{lemma} \ No newline at end of file