diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-05-28 16:26:19 +0200 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2024-05-28 16:26:19 +0200 |
| commit | a6a83d15a866d7ba40dfc6b733cea14314da3b25 (patch) | |
| tree | f41fd89c9e4f40f70201546073c19bccf19afe60 /library/numbers.tex | |
| parent | a5deeef9c3214f0f2ccd90789f5344a88544d65b (diff) | |
| parent | ecfb1a66f2159e078199e54edf8a80004c28195a (diff) | |
Merge branch 'main' into main
Diffstat (limited to 'library/numbers.tex')
| -rw-r--r-- | library/numbers.tex | 195 |
1 files changed, 195 insertions, 0 deletions
diff --git a/library/numbers.tex b/library/numbers.tex new file mode 100644 index 0000000..5dd06da --- /dev/null +++ b/library/numbers.tex @@ -0,0 +1,195 @@ +\import{nat.tex} +\import{order/order.tex} +\import{relation.tex} + +\section{The real numbers} + +%TODO: Implementing Notion for negativ number such as -x. + +%TODO: +%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher +%\cdot für multiklikation verwenden. +%< für die relation benutzen. +% sup und inf einfügen + +\begin{signature} + $\reals$ is a set. +\end{signature} + +\begin{signature} + $x + y$ is a set. +\end{signature} + +\begin{signature} + $x \times y$ is a set. +\end{signature} + +\begin{axiom}\label{one_in_reals} + $1 \in \reals$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_order} + $\lt[\reals]$ is an order on $\reals$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_strictorder} + $\lt[\reals]$ is a strict order. +\end{axiom} + +\begin{abbreviation}\label{less_on_reals} + $x < y$ iff $(x,y) \in \lt[\reals]$. +\end{abbreviation} + +\begin{abbreviation}\label{greater_on_reals} + $x > y$ iff $y < x$. +\end{abbreviation} + +\begin{abbreviation}\label{lesseq_on_reals} + $x \leq y$ iff it is wrong that $x > y$. +\end{abbreviation} + +\begin{abbreviation}\label{greatereq_on_reals} + $x \geq y$ iff it is wrong that $x < y$. +\end{abbreviation} + +\begin{axiom}\label{reals_axiom_dense} + For all $x,y \in \reals$ if $x < y$ then + there exist $z \in \reals$ such that $x < z$ and $z < y$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_order_def} + $x < y$ iff there exist $z \in \reals$ such that $\zero < z$ and $x + z = y$. +\end{axiom} + +\begin{lemma}\label{reals_one_bigger_than_zero} + $\zero < 1$. +\end{lemma} + + +\begin{axiom}\label{reals_axiom_assoc} + For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \times y) \times z = x \times (y \times z)$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_kommu} + For all $x,y \in \reals$ $x + y = y + x$ and $x \times y = y \times x$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_zero_in_reals} + $\zero \in \reals$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_zero} + For all $x \in \reals$ $x + \zero = x$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_one} + For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_add_invers} + For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. +\end{axiom} + + +\begin{axiom}\label{reals_axiom_mul_invers} + For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \times y = 1$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_disstro1} + For all $x,y,z \in \reals$ $x \times (y + z) = (x \times y) + (x \times z)$. +\end{axiom} + +\begin{proposition}\label{reals_disstro2} + For all $x,y,z \in \reals$ $(y + z) \times x = (y \times x) + (z \times x)$. +\end{proposition} + +\begin{proposition}\label{reals_reducion_on_addition} + For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. +\end{proposition} + +\begin{axiom}\label{reals_axiom_dedekind_complete} + For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$ + such that $x < z < y$. +\end{axiom} + + +\begin{lemma}\label{order_reals_lemma1} + For all $x,y,z \in \reals$ such that $\zero < x$ + if $y < z$ + then $(y \times x) < (z \times x)$. +\end{lemma} + +\begin{lemma}\label{order_reals_lemma2} + For all $x,y,z \in \reals$ such that $\zero < x$ + if $y < z$ + then $(x \times y) < (x \times z)$. +\end{lemma} + + +\begin{lemma}\label{order_reals_lemma3} + For all $x,y,z \in \reals$ such that $x < \zero$ + if $y < z$ + then $(x \times z) < (x \times y)$. +\end{lemma} + +\begin{lemma}\label{o4rder_reals_lemma} + For all $x,y \in \reals$ if $x > y$ then $x \geq y$. +\end{lemma} + +\begin{lemma}\label{order_reals_lemma5} + For all $x,y \in \reals$ if $x < y$ then $x \leq y$. +\end{lemma} + +\begin{lemma}\label{order_reals_lemma6} + For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$. +\end{lemma} + +\begin{axiom}\label{reals_axiom_minus} + For all $x \in \reals$ $x - x = \zero$. +\end{axiom} + +\begin{lemma}\label{reals_minus} + Assume $x,y \in \reals$. If $x - y = \zero$ then $x=y$. +\end{lemma} + +%\begin{definition}\label{reasl_supremum} %expaction "there exists" after \mid +% $\rsup{X} = \{z \mid \text{ $z \in \reals$ and for all $x,y$ such that $x \in X$ and $y,x \in \reals$ and $x < y$ we have $z \leq y$ }\}$. +%\end{definition} + +\begin{definition}\label{upper_bound} + $x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$. +\end{definition} + +\begin{definition}\label{least_upper_bound} + $x$ is a least upper bound of $X$ iff $x$ is an upper bound of $X$ and for all $y$ such that $y$ is an upper bound of $X$ we have $x \leq y$. +\end{definition} + +\begin{lemma}\label{supremum_unique} + %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. + If $x$ is a least upper bound of $X$ and $y$ is a least upper bound of $X$ then $x = y$. +\end{lemma} + +\begin{definition}\label{supremum_reals} + $x$ is the supremum of $X$ iff $x$ is a least upper bound of $X$. +\end{definition} + + + + +\begin{definition}\label{lower_bound} + $x$ is an lower bound of $X$ iff for all $y \in X$ we have $x < y$. +\end{definition} + +\begin{definition}\label{greatest_lower_bound} + $x$ is a greatest lower bound of $X$ iff $x$ is an lower bound of $X$ and for all $y$ such that $y$ is an lower bound of $X$ we have $x \geq y$. +\end{definition} + +\begin{lemma}\label{infimum_unique} + %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. + If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$. +\end{lemma} + +\begin{definition}\label{infimum_reals} + $x$ is the supremum of $X$ iff $x$ is a greatest lower bound of $X$. +\end{definition} + |
