diff options
| author | adelon <22380201+adelon@users.noreply.github.com> | 2024-02-10 02:22:14 +0100 |
|---|---|---|
| committer | adelon <22380201+adelon@users.noreply.github.com> | 2024-02-10 02:22:14 +0100 |
| commit | 442d732696ad431b84f6e5c72b6ee785be4fd968 (patch) | |
| tree | b476f395e7e91d67bacb6758bc84914b8711593f /library/order/quasiorder.tex | |
Initial commit
Diffstat (limited to 'library/order/quasiorder.tex')
| -rw-r--r-- | library/order/quasiorder.tex | 51 |
1 files changed, 51 insertions, 0 deletions
diff --git a/library/order/quasiorder.tex b/library/order/quasiorder.tex new file mode 100644 index 0000000..ab325e7 --- /dev/null +++ b/library/order/quasiorder.tex @@ -0,0 +1,51 @@ +\import{relation.tex} +\import{relation/properties.tex} + +\subsection{Quasiorders} + +% also called preorder +\begin{abbreviation}\label{quasiorder} + $R$ is a quasiorder iff + $R$ is quasireflexive and transitive. +\end{abbreviation} + +% also called preorder +\begin{abbreviation}\label{quasiorder_on} + $R$ is a quasiorder on $A$ iff + $R$ is a binary relation on $A$ and + $R$ is reflexive on $A$ and transitive. +\end{abbreviation} + +\begin{struct}\label{quasiordered_set} + A quasiordered set $X$ is a onesorted structure + equipped with + \begin{enumerate} + \item $\lt$ + \end{enumerate} + such that + \begin{enumerate} + \item\label{quasiorder_type} $\lt[X]$ is a binary relation on $\carrier[X]$. + \item\label{quasiorder_refl} $\lt[X]$ is reflexive on $\carrier[X]$. + \item\label{quasiorder_tran} $\lt[X]$ is transitive. + \end{enumerate} +\end{struct} + +\begin{lemma}\label{quasiorder_transitive_double} + Let $X$ be a quasiordered set. + Let $a, b, c, d \in X$. + Suppose $a\mathrel{\lt[X]} b\mathrel{\lt[X]} c\mathrel{\lt[X]} d$. + Then $a\mathrel{\lt[X]} d$. +\end{lemma} +\begin{proof} + $\lt[X]$ is transitive. + Thus $a\mathrel{\lt[X]} c\mathrel{\lt[X]} d$ by \hyperref[transitive]{transitivity}. + Hence $a\mathrel{\lt[X]} d$ by \hyperref[transitive]{transitivity}. +\end{proof} + +\begin{proposition}\label{subseteqrel_is_quasiorder} + $\subseteqrel{A}$ is a quasiorder on $A$. +\end{proposition} +\begin{proof} + $\subseteqrel{A}$ is reflexive on $A$. + $\subseteqrel{A}$ is transitive. +\end{proof} |
