summaryrefslogtreecommitdiff
path: root/library/order/quasiorder.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/order/quasiorder.tex')
-rw-r--r--library/order/quasiorder.tex51
1 files changed, 51 insertions, 0 deletions
diff --git a/library/order/quasiorder.tex b/library/order/quasiorder.tex
new file mode 100644
index 0000000..ab325e7
--- /dev/null
+++ b/library/order/quasiorder.tex
@@ -0,0 +1,51 @@
+\import{relation.tex}
+\import{relation/properties.tex}
+
+\subsection{Quasiorders}
+
+% also called preorder
+\begin{abbreviation}\label{quasiorder}
+ $R$ is a quasiorder iff
+ $R$ is quasireflexive and transitive.
+\end{abbreviation}
+
+% also called preorder
+\begin{abbreviation}\label{quasiorder_on}
+ $R$ is a quasiorder on $A$ iff
+ $R$ is a binary relation on $A$ and
+ $R$ is reflexive on $A$ and transitive.
+\end{abbreviation}
+
+\begin{struct}\label{quasiordered_set}
+ A quasiordered set $X$ is a onesorted structure
+ equipped with
+ \begin{enumerate}
+ \item $\lt$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item\label{quasiorder_type} $\lt[X]$ is a binary relation on $\carrier[X]$.
+ \item\label{quasiorder_refl} $\lt[X]$ is reflexive on $\carrier[X]$.
+ \item\label{quasiorder_tran} $\lt[X]$ is transitive.
+ \end{enumerate}
+\end{struct}
+
+\begin{lemma}\label{quasiorder_transitive_double}
+ Let $X$ be a quasiordered set.
+ Let $a, b, c, d \in X$.
+ Suppose $a\mathrel{\lt[X]} b\mathrel{\lt[X]} c\mathrel{\lt[X]} d$.
+ Then $a\mathrel{\lt[X]} d$.
+\end{lemma}
+\begin{proof}
+ $\lt[X]$ is transitive.
+ Thus $a\mathrel{\lt[X]} c\mathrel{\lt[X]} d$ by \hyperref[transitive]{transitivity}.
+ Hence $a\mathrel{\lt[X]} d$ by \hyperref[transitive]{transitivity}.
+\end{proof}
+
+\begin{proposition}\label{subseteqrel_is_quasiorder}
+ $\subseteqrel{A}$ is a quasiorder on $A$.
+\end{proposition}
+\begin{proof}
+ $\subseteqrel{A}$ is reflexive on $A$.
+ $\subseteqrel{A}$ is transitive.
+\end{proof}