summaryrefslogtreecommitdiff
path: root/library/relation/properties.tex
diff options
context:
space:
mode:
authoradelon <22380201+adelon@users.noreply.github.com>2024-02-10 02:22:14 +0100
committeradelon <22380201+adelon@users.noreply.github.com>2024-02-10 02:22:14 +0100
commit442d732696ad431b84f6e5c72b6ee785be4fd968 (patch)
treeb476f395e7e91d67bacb6758bc84914b8711593f /library/relation/properties.tex
Initial commit
Diffstat (limited to 'library/relation/properties.tex')
-rw-r--r--library/relation/properties.tex202
1 files changed, 202 insertions, 0 deletions
diff --git a/library/relation/properties.tex b/library/relation/properties.tex
new file mode 100644
index 0000000..191b7c0
--- /dev/null
+++ b/library/relation/properties.tex
@@ -0,0 +1,202 @@
+\import{set.tex}
+\import{relation.tex}
+
+\subsection{Properties of relations}
+
+\begin{definition}\label{left_quasireflexive}
+ $R$ is left quasireflexive iff
+ for all $x, y$ such that $x\mathrel{R} y$
+ we have $x\mathrel{R}x$.
+\end{definition}
+
+\begin{definition}\label{right_quasireflexive}
+ $R$ is right quasireflexive iff
+ for all $x, y$ such that $x\mathrel{R} y$
+ we have $y\mathrel{R}y$.
+\end{definition}
+
+\begin{definition}\label{quasireflexive}
+ $R$ is quasireflexive iff
+ for all $x, y$ such that $x\mathrel{R} y$
+ we have $x\mathrel{R}x$ and $y\mathrel{R}y$.
+\end{definition}
+
+\begin{definition}\label{coreflexive}
+ $R$ is coreflexive iff
+ for all $x, y$ such that $x\mathrel{R} y$
+ we have $x = y$.
+\end{definition}
+
+\begin{definition}\label{reflexive_on}
+ $R$ is reflexive on $X$ iff
+ for all $x\in X$
+ we have $x\mathrel{R}x$.
+\end{definition}
+
+\begin{definition}\label{irreflexive}
+ $R$ is irreflexive iff
+ for all $x$ we have $(x,x)\notin R$.
+\end{definition}
+
+
+\begin{proposition}\label{quasireflexive_implies_reflexive_on_fld}
+ Suppose $R$ is quasireflexive.
+ Then $R$ is reflexive on $\fld{R}$.
+\end{proposition}
+
+\begin{proposition}\label{reflexive_on_fld_impliesquasireflexive}
+ Suppose $R$ is reflexive on $\fld{R}$.
+ Then $R$ is quasireflexive.
+\end{proposition}
+
+\begin{proposition}\label{inters_of_family_of_reflexive_relations_is_reflexive}
+ Let $F$ be an inhabited family of relations.
+ Suppose every element of $F$ is reflexive on $A$.
+ Then $\inters{F}$ is reflexive on $A$.
+\end{proposition}
+\begin{proof}
+ For all $a\in A$ we have for all $R\in F$ we have $a\mathrel{R} a$.
+ Thus for all $a\in A$ we have $a\mathrel{(\inters{F})} a$.
+\end{proof}
+
+\begin{definition}\label{antisymmetric}
+ $R$ is antisymmetric iff
+ for all $x, y$ such that $x\mathrel{R}y\mathrel{R}x$
+ we have $x = y$.
+\end{definition}
+
+\begin{definition}[Symmetry]\label{symmetric}
+ $R$ is symmetric iff
+ for all $x, y$ we have
+ $x\mathrel{R} y \iff y\mathrel{R}x$.
+\end{definition}
+
+\begin{definition}\label{asymmetric}
+ $R$ is asymmetric iff
+ for all $x, y$ such that
+ $x\mathrel{R} y$ we have $y\not\mathrel{R}x$.
+\end{definition}
+
+\begin{proposition}\label{asymmetric_implies_irreflexive}
+ Suppose $R$ is asymmetric.
+ Then $R$ is irreflexive.
+\end{proposition}
+
+\begin{proposition}\label{asymmetric_implies_antisymmetric}
+ Suppose $R$ is asymmetric.
+ Then $R$ is antisymmetric.
+\end{proposition}
+
+\begin{proposition}\label{antisymmetric_and_irreflexive_implies_asymmetric}
+ Suppose $R$ is antisymmetric.
+ Suppose $R$ is irreflexive.
+ Then $R$ is asymmetric.
+\end{proposition}
+
+% TODO
+%\begin{proposition}\label{symmetric_relation_eq_converse}
+% Let $R$ be a symmetric relation.
+% Then $\converse{R} = R$.
+%\end{proposition}
+%\begin{proof}
+% Follows by set extensionality.
+%\end{proof}
+
+\begin{definition}[Transitivity]\label{transitive}
+ $R$ is transitive iff
+ for all $x, y, z$ such that $x\mathrel{R}y\mathrel{R}z$
+ we have $x\mathrel{R} z$.
+\end{definition}
+
+\begin{proposition}\label{transitive_downward_elem}
+ Suppose $R$ is transitive.
+ Suppose $a\in\downward{R}{b}$.
+ Suppose $c\in\downward{R}{a}$.
+ Then $c\in \downward{R}{b}$.
+\end{proposition}
+\begin{proof}
+ $c\mathrel{R} a\mathrel{R}b$.
+ Thus $c\mathrel{R} b$ by \hyperref[transitive]{transitivity}.
+\end{proof}
+
+\begin{proposition}\label{transitive_downward_subseteq}
+ Suppose $R$ is transitive.
+ Suppose $a\in\downward{R}{b}$.
+ Then $\downward{R}{a}\subseteq \downward{R}{b}$.
+\end{proposition}
+
+\begin{definition}\label{dense}
+ $R$ is dense iff
+ for all $x, z$ such that $x\mathrel{R}z$
+ there exists $y$ such that $x\mathrel{R}y\mathrel{R}z$.
+\end{definition}
+
+% Variation of connexity that does not depend on a carrier.
+\begin{definition}\label{quasiconnex}
+ $R$ is quasiconnex iff
+ for all $x, y\in\fld{R}$ such that $x\neq y$ we have
+ $x\mathrel{R}y$ or $y\mathrel{R}x$.
+\end{definition}
+
+% Also called "connected" (here reserved for topology),
+% "complete" (heavily overloaded), and total" (also overloaded).
+\begin{definition}\label{connex}
+ $R$ is connex on $X$ iff
+ for all $x, y\in X$ such that $x\neq y$ we have
+ $x\mathrel{R}y$ or $y\mathrel{R}x$.
+\end{definition}
+
+\begin{definition}\label{strongly_quasiconnex}
+ $R$ is strongly quasiconnex iff
+ for all $x, y\in\fld{R}$ we have
+ $x\mathrel{R}y$ or $y\mathrel{R}x$.
+\end{definition}
+
+\begin{definition}\label{strongly_connex}
+ $R$ is strongly connex on $X$ iff
+ for all $x, y\in X$ we have
+ $x\mathrel{R}y$ or $y\mathrel{R}x$.
+\end{definition}
+
+%\begin{proposition}\label{strongly_quasiconnex_implies_quasiconnex_and_quasireflexive}
+% Suppose $R$ is strongly quasiconnex.
+% Then $R$ is quasiconnex and quasireflexive.
+%\end{proposition}
+
+%\begin{proposition}\label{quasiconnex_and_quasireflexive_implies_strongly_quasiconnex}
+% Suppose $R$ is quasiconnex and quasireflexive.
+% Then $R$ is strongly quasiconnex.
+%\end{proposition}
+
+\begin{proposition}\label{strongly_quasiconnex_iff_quasiconnex_and_quasireflexive}
+ $R$ is strongly quasiconnex iff
+ $R$ is quasiconnex and quasireflexive.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{quasiconnex,strongly_quasiconnex,quasireflexive_implies_reflexive_on_fld,reflexive_on,fld,reflexive_on_fld_impliesquasireflexive}.
+\end{proof}
+
+\begin{proposition}\label{connex_reaches_all_or_all_but_one}
+ Suppose $R$ is connex on $A$.
+ Let $a, b\in A\setminus\ran{R}$.
+ Then $a = b$.
+\end{proposition}
+\begin{proof}
+ Suppose not.
+ $a, b\in A$.
+ Then $(a, b)\in R$ or $(b,a)\in R$ by \cref{connex}.
+ $(a, b)\notin R$.
+ $(b, a)\notin R$.
+ Thus $a = b$.
+\end{proof}
+
+
+\begin{definition}\label{righteuclidean}
+ $R$ is right Euclidean iff
+ for all $a,b,c$ such that $a\mathrel{R}b,c$ we have $b\mathrel{R}c$.
+\end{definition}
+
+\begin{definition}\label{lefteuclidean}
+ $R$ is left Euclidean iff
+ for all $a,b,c$ such that $a,b\mathrel{R}c$ we have $a\mathrel{R}b$.
+\end{definition}