diff options
Diffstat (limited to 'library/relation/properties.tex')
| -rw-r--r-- | library/relation/properties.tex | 202 |
1 files changed, 202 insertions, 0 deletions
diff --git a/library/relation/properties.tex b/library/relation/properties.tex new file mode 100644 index 0000000..191b7c0 --- /dev/null +++ b/library/relation/properties.tex @@ -0,0 +1,202 @@ +\import{set.tex} +\import{relation.tex} + +\subsection{Properties of relations} + +\begin{definition}\label{left_quasireflexive} + $R$ is left quasireflexive iff + for all $x, y$ such that $x\mathrel{R} y$ + we have $x\mathrel{R}x$. +\end{definition} + +\begin{definition}\label{right_quasireflexive} + $R$ is right quasireflexive iff + for all $x, y$ such that $x\mathrel{R} y$ + we have $y\mathrel{R}y$. +\end{definition} + +\begin{definition}\label{quasireflexive} + $R$ is quasireflexive iff + for all $x, y$ such that $x\mathrel{R} y$ + we have $x\mathrel{R}x$ and $y\mathrel{R}y$. +\end{definition} + +\begin{definition}\label{coreflexive} + $R$ is coreflexive iff + for all $x, y$ such that $x\mathrel{R} y$ + we have $x = y$. +\end{definition} + +\begin{definition}\label{reflexive_on} + $R$ is reflexive on $X$ iff + for all $x\in X$ + we have $x\mathrel{R}x$. +\end{definition} + +\begin{definition}\label{irreflexive} + $R$ is irreflexive iff + for all $x$ we have $(x,x)\notin R$. +\end{definition} + + +\begin{proposition}\label{quasireflexive_implies_reflexive_on_fld} + Suppose $R$ is quasireflexive. + Then $R$ is reflexive on $\fld{R}$. +\end{proposition} + +\begin{proposition}\label{reflexive_on_fld_impliesquasireflexive} + Suppose $R$ is reflexive on $\fld{R}$. + Then $R$ is quasireflexive. +\end{proposition} + +\begin{proposition}\label{inters_of_family_of_reflexive_relations_is_reflexive} + Let $F$ be an inhabited family of relations. + Suppose every element of $F$ is reflexive on $A$. + Then $\inters{F}$ is reflexive on $A$. +\end{proposition} +\begin{proof} + For all $a\in A$ we have for all $R\in F$ we have $a\mathrel{R} a$. + Thus for all $a\in A$ we have $a\mathrel{(\inters{F})} a$. +\end{proof} + +\begin{definition}\label{antisymmetric} + $R$ is antisymmetric iff + for all $x, y$ such that $x\mathrel{R}y\mathrel{R}x$ + we have $x = y$. +\end{definition} + +\begin{definition}[Symmetry]\label{symmetric} + $R$ is symmetric iff + for all $x, y$ we have + $x\mathrel{R} y \iff y\mathrel{R}x$. +\end{definition} + +\begin{definition}\label{asymmetric} + $R$ is asymmetric iff + for all $x, y$ such that + $x\mathrel{R} y$ we have $y\not\mathrel{R}x$. +\end{definition} + +\begin{proposition}\label{asymmetric_implies_irreflexive} + Suppose $R$ is asymmetric. + Then $R$ is irreflexive. +\end{proposition} + +\begin{proposition}\label{asymmetric_implies_antisymmetric} + Suppose $R$ is asymmetric. + Then $R$ is antisymmetric. +\end{proposition} + +\begin{proposition}\label{antisymmetric_and_irreflexive_implies_asymmetric} + Suppose $R$ is antisymmetric. + Suppose $R$ is irreflexive. + Then $R$ is asymmetric. +\end{proposition} + +% TODO +%\begin{proposition}\label{symmetric_relation_eq_converse} +% Let $R$ be a symmetric relation. +% Then $\converse{R} = R$. +%\end{proposition} +%\begin{proof} +% Follows by set extensionality. +%\end{proof} + +\begin{definition}[Transitivity]\label{transitive} + $R$ is transitive iff + for all $x, y, z$ such that $x\mathrel{R}y\mathrel{R}z$ + we have $x\mathrel{R} z$. +\end{definition} + +\begin{proposition}\label{transitive_downward_elem} + Suppose $R$ is transitive. + Suppose $a\in\downward{R}{b}$. + Suppose $c\in\downward{R}{a}$. + Then $c\in \downward{R}{b}$. +\end{proposition} +\begin{proof} + $c\mathrel{R} a\mathrel{R}b$. + Thus $c\mathrel{R} b$ by \hyperref[transitive]{transitivity}. +\end{proof} + +\begin{proposition}\label{transitive_downward_subseteq} + Suppose $R$ is transitive. + Suppose $a\in\downward{R}{b}$. + Then $\downward{R}{a}\subseteq \downward{R}{b}$. +\end{proposition} + +\begin{definition}\label{dense} + $R$ is dense iff + for all $x, z$ such that $x\mathrel{R}z$ + there exists $y$ such that $x\mathrel{R}y\mathrel{R}z$. +\end{definition} + +% Variation of connexity that does not depend on a carrier. +\begin{definition}\label{quasiconnex} + $R$ is quasiconnex iff + for all $x, y\in\fld{R}$ such that $x\neq y$ we have + $x\mathrel{R}y$ or $y\mathrel{R}x$. +\end{definition} + +% Also called "connected" (here reserved for topology), +% "complete" (heavily overloaded), and total" (also overloaded). +\begin{definition}\label{connex} + $R$ is connex on $X$ iff + for all $x, y\in X$ such that $x\neq y$ we have + $x\mathrel{R}y$ or $y\mathrel{R}x$. +\end{definition} + +\begin{definition}\label{strongly_quasiconnex} + $R$ is strongly quasiconnex iff + for all $x, y\in\fld{R}$ we have + $x\mathrel{R}y$ or $y\mathrel{R}x$. +\end{definition} + +\begin{definition}\label{strongly_connex} + $R$ is strongly connex on $X$ iff + for all $x, y\in X$ we have + $x\mathrel{R}y$ or $y\mathrel{R}x$. +\end{definition} + +%\begin{proposition}\label{strongly_quasiconnex_implies_quasiconnex_and_quasireflexive} +% Suppose $R$ is strongly quasiconnex. +% Then $R$ is quasiconnex and quasireflexive. +%\end{proposition} + +%\begin{proposition}\label{quasiconnex_and_quasireflexive_implies_strongly_quasiconnex} +% Suppose $R$ is quasiconnex and quasireflexive. +% Then $R$ is strongly quasiconnex. +%\end{proposition} + +\begin{proposition}\label{strongly_quasiconnex_iff_quasiconnex_and_quasireflexive} + $R$ is strongly quasiconnex iff + $R$ is quasiconnex and quasireflexive. +\end{proposition} +\begin{proof} + Follows by \cref{quasiconnex,strongly_quasiconnex,quasireflexive_implies_reflexive_on_fld,reflexive_on,fld,reflexive_on_fld_impliesquasireflexive}. +\end{proof} + +\begin{proposition}\label{connex_reaches_all_or_all_but_one} + Suppose $R$ is connex on $A$. + Let $a, b\in A\setminus\ran{R}$. + Then $a = b$. +\end{proposition} +\begin{proof} + Suppose not. + $a, b\in A$. + Then $(a, b)\in R$ or $(b,a)\in R$ by \cref{connex}. + $(a, b)\notin R$. + $(b, a)\notin R$. + Thus $a = b$. +\end{proof} + + +\begin{definition}\label{righteuclidean} + $R$ is right Euclidean iff + for all $a,b,c$ such that $a\mathrel{R}b,c$ we have $b\mathrel{R}c$. +\end{definition} + +\begin{definition}\label{lefteuclidean} + $R$ is left Euclidean iff + for all $a,b,c$ such that $a,b\mathrel{R}c$ we have $a\mathrel{R}b$. +\end{definition} |
