diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-05-28 17:36:49 +0200 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2024-05-28 17:36:49 +0200 |
| commit | 68598ccc2e420376a790b31b93efa7f18f91edf6 (patch) | |
| tree | 6ca3ecd36d8d84ea7153d74cab73361052d03565 /library/set/filter.tex | |
| parent | 266529fa1271a942920845072efb588c64c4aba3 (diff) | |
| parent | a08c4b2d7a7135029a588df542c18fdf07725075 (diff) | |
Merge pull request #2 from adelon/main
changes from main needs to be included
Diffstat (limited to 'library/set/filter.tex')
| -rw-r--r-- | library/set/filter.tex | 64 |
1 files changed, 57 insertions, 7 deletions
diff --git a/library/set/filter.tex b/library/set/filter.tex index 2797d86..4537b81 100644 --- a/library/set/filter.tex +++ b/library/set/filter.tex @@ -3,6 +3,8 @@ \section{Filters} +\subsection{Definition and basic properties of filters} + \begin{abbreviation}\label{upwardclosed} $F$ is upward-closed in $S$ iff for all $A, B$ such that $A\subseteq B\subseteq S$ and $A\in F$ we have $B\in F$. @@ -11,21 +13,71 @@ \begin{definition}\label{filter} $F$ is a filter on $S$ iff $F$ is a family of subsets of $S$ - and $S$ is inhabited and $S\in F$ and $\emptyset\notin F$ and $F$ is closed under binary intersections and $F$ is upward-closed in $S$. \end{definition} +\begin{proposition}\label{filter_ext_complement} + Let $F, G$ be filters on $S$. + Suppose for all $A\subseteq S$ we have $S\setminus A\in F$ iff $S\setminus A\in G$. + Then $F = G$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{filter_inter_in_iff} + Let $F$ be a filter on $S$. + Suppose $A, B\subseteq S$. + Then $A\inter B\in F$ iff $A, B\in F$. +\end{proposition} +\begin{proof} + We have $A\inter B\subseteq A, B$. + Follows by \cref{filter}. +\end{proof} + +\begin{proposition}\label{filter_setminus_in} + Let $F$ be a filter on $S$. + Suppose $A\in F$. + Suppose $B\subseteq S$ and $S\setminus B\in F$. + Then $A\setminus B\in F$. +\end{proposition} +\begin{proof} + We have $A\subseteq S$. + Thus $A\setminus B = A\inter (S\setminus B)$ by \cref{setminus_eq_inter_complement}. + Now $S\setminus B\subseteq S$. + Follows by \cref{filter_inter_in_iff}. +\end{proof} + +\begin{proposition}\label{filter_in_iff_exists_subset} + Let $F$ be a filter on $S$. + Suppose $B\subseteq S$. + Then $B\in F$ iff there exists $A\subseteq B$ such that $A\in F$. +\end{proposition} + + +\subsection{Principal filters over a set} + \begin{definition}\label{principalfilter} $\principalfilter{S}{A} = \{X\in\pow{S}\mid A\subseteq X\}$. \end{definition} -%\begin{proposition}\label{principalfilter_domain_inhabited} -% Suppose $F$ is a filter on $S$. -% Then $S$ is inhabited. -%\end{proposition} +\begin{proposition}\label{principalfilter_iff} + Suppose $A, B\subseteq S$. + Then $B\in\principalfilter{S}{A}$ iff $A\subseteq B$. +\end{proposition} + +\begin{proposition}\label{principalfilter_bottom} + Suppose $A\subseteq S$. + Then $A\in\principalfilter{S}{A}$. +\end{proposition} + +\begin{proposition}\label{principalfilter_top} + Suppose $A\subseteq S$. + Then $S\in\principalfilter{S}{A}$. +\end{proposition} \begin{proposition}\label{principalfilter_is_filter} Suppose $A\subseteq S$. @@ -55,8 +107,6 @@ Suppose $X\notin\principalfilter{S}{A}$. Then $A\not\subseteq X$. \end{proposition} -\begin{proof} -\end{proof} \begin{definition}\label{maximalfilter} $F$ is a maximal filter on $S$ iff |
