summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-05-28 17:36:49 +0200
committerGitHub <noreply@github.com>2024-05-28 17:36:49 +0200
commit68598ccc2e420376a790b31b93efa7f18f91edf6 (patch)
tree6ca3ecd36d8d84ea7153d74cab73361052d03565 /library
parent266529fa1271a942920845072efb588c64c4aba3 (diff)
parenta08c4b2d7a7135029a588df542c18fdf07725075 (diff)
Merge pull request #2 from adelon/main
changes from main needs to be included
Diffstat (limited to 'library')
-rw-r--r--library/set.tex19
-rw-r--r--library/set/filter.tex64
-rw-r--r--library/set/powerset.tex16
-rw-r--r--library/topology/basis.tex36
-rw-r--r--library/topology/topological-space.tex10
5 files changed, 98 insertions, 47 deletions
diff --git a/library/set.tex b/library/set.tex
index 33e5af4..2fd18ea 100644
--- a/library/set.tex
+++ b/library/set.tex
@@ -131,8 +131,7 @@ which applies it to goals of the form “$A = B$” and “$A \neq B$”.
If $x$ and $y$ are empty, then $x = y$.
\end{proposition}
-\begin{proposition}%
-\label{emptyset_subseteq}
+\begin{proposition}\label{emptyset_subseteq}
For all $a$ we have $\emptyset \subseteq a$.
% LATER $\emptyset$ is a subset of every set.
\end{proposition}
@@ -266,8 +265,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
There exists $B\in C$ such that $A\in B$.
\end{proof}
-\begin{proposition}%
-\label{unions_emptyset}
+\begin{proposition}\label{unions_emptyset}
$\unions{\emptyset} = \emptyset$.
\end{proposition}
@@ -553,13 +551,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
Follows by set extensionality.
\end{proof}
-\begin{proposition}%
-\label{inter_subseteq}
- $A\inter B\subseteq A$.
-\end{proposition}
-
-\begin{proposition}%
-\label{inter_emptyset}
+\begin{proposition}\label{inter_emptyset}
$A\inter\emptyset = \emptyset$.
\end{proposition}
\begin{proof}
@@ -620,6 +612,11 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
Follows by set extensionality.
\end{proof}
+\begin{proposition}\label{inter_subseteq}
+ Suppose $A,B\subseteq C$.
+ Then $A\inter B\subseteq C$.
+\end{proposition}
+
\begin{abbreviation}\label{closedunderinter}
$T$ is closed under binary intersections
iff for every $U,V\in T$ we have $U\inter V\in T$.
diff --git a/library/set/filter.tex b/library/set/filter.tex
index 2797d86..4537b81 100644
--- a/library/set/filter.tex
+++ b/library/set/filter.tex
@@ -3,6 +3,8 @@
\section{Filters}
+\subsection{Definition and basic properties of filters}
+
\begin{abbreviation}\label{upwardclosed}
$F$ is upward-closed in $S$ iff
for all $A, B$ such that $A\subseteq B\subseteq S$ and $A\in F$ we have $B\in F$.
@@ -11,21 +13,71 @@
\begin{definition}\label{filter}
$F$ is a filter on $S$ iff
$F$ is a family of subsets of $S$
- and $S$ is inhabited
and $S\in F$
and $\emptyset\notin F$
and $F$ is closed under binary intersections
and $F$ is upward-closed in $S$.
\end{definition}
+\begin{proposition}\label{filter_ext_complement}
+ Let $F, G$ be filters on $S$.
+ Suppose for all $A\subseteq S$ we have $S\setminus A\in F$ iff $S\setminus A\in G$.
+ Then $F = G$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{filter_inter_in_iff}
+ Let $F$ be a filter on $S$.
+ Suppose $A, B\subseteq S$.
+ Then $A\inter B\in F$ iff $A, B\in F$.
+\end{proposition}
+\begin{proof}
+ We have $A\inter B\subseteq A, B$.
+ Follows by \cref{filter}.
+\end{proof}
+
+\begin{proposition}\label{filter_setminus_in}
+ Let $F$ be a filter on $S$.
+ Suppose $A\in F$.
+ Suppose $B\subseteq S$ and $S\setminus B\in F$.
+ Then $A\setminus B\in F$.
+\end{proposition}
+\begin{proof}
+ We have $A\subseteq S$.
+ Thus $A\setminus B = A\inter (S\setminus B)$ by \cref{setminus_eq_inter_complement}.
+ Now $S\setminus B\subseteq S$.
+ Follows by \cref{filter_inter_in_iff}.
+\end{proof}
+
+\begin{proposition}\label{filter_in_iff_exists_subset}
+ Let $F$ be a filter on $S$.
+ Suppose $B\subseteq S$.
+ Then $B\in F$ iff there exists $A\subseteq B$ such that $A\in F$.
+\end{proposition}
+
+
+\subsection{Principal filters over a set}
+
\begin{definition}\label{principalfilter}
$\principalfilter{S}{A} = \{X\in\pow{S}\mid A\subseteq X\}$.
\end{definition}
-%\begin{proposition}\label{principalfilter_domain_inhabited}
-% Suppose $F$ is a filter on $S$.
-% Then $S$ is inhabited.
-%\end{proposition}
+\begin{proposition}\label{principalfilter_iff}
+ Suppose $A, B\subseteq S$.
+ Then $B\in\principalfilter{S}{A}$ iff $A\subseteq B$.
+\end{proposition}
+
+\begin{proposition}\label{principalfilter_bottom}
+ Suppose $A\subseteq S$.
+ Then $A\in\principalfilter{S}{A}$.
+\end{proposition}
+
+\begin{proposition}\label{principalfilter_top}
+ Suppose $A\subseteq S$.
+ Then $S\in\principalfilter{S}{A}$.
+\end{proposition}
\begin{proposition}\label{principalfilter_is_filter}
Suppose $A\subseteq S$.
@@ -55,8 +107,6 @@
Suppose $X\notin\principalfilter{S}{A}$.
Then $A\not\subseteq X$.
\end{proposition}
-\begin{proof}
-\end{proof}
\begin{definition}\label{maximalfilter}
$F$ is a maximal filter on $S$ iff
diff --git a/library/set/powerset.tex b/library/set/powerset.tex
index 80da4cb..ec5866f 100644
--- a/library/set/powerset.tex
+++ b/library/set/powerset.tex
@@ -6,8 +6,7 @@
The powerset of $X$ denotes $\pow{X}$.
\end{abbreviation}
-\begin{axiom}%
-\label{pow_iff}
+\begin{axiom}\label{pow_iff}
$B\in\pow{A}$ iff $B\subseteq A$.
\end{axiom}
@@ -47,6 +46,17 @@
Follows by \cref{pow_iff,unions_subseteq_of_powerset_is_subseteq}.
\end{proof}
+
+\begin{proposition}\label{inter_powerset}
+ Let $A,B\in\pow{C}$.
+ Then $A\inter B\in\pow{C}$.
+\end{proposition}
+\begin{proof}
+ We have $A,B\subseteq C$ by \cref{pow_iff}.
+ $A\inter B\subseteq C$ by \cref{inter_subseteq}.
+ Follows by \cref{pow_iff}.
+\end{proof}
+
\begin{proposition}\label{unions_powerset}
$\unions{\pow{A}} = A$.
\end{proposition}
@@ -76,7 +86,7 @@
% LATER
%\begin{proposition}\label{powerset_cons}
-% Then $\pow{\cons{b}{A}} = \pow{A}\union \{\cons{b}{B}\mid B\in\pow{A}\}$.
+% $\pow{\cons{b}{A}} = \pow{A}\union \{\cons{b}{B}\mid B\in\pow{A}\}$.
%\end{proposition}
\begin{proposition}\label{powerset_union_subseteq}
diff --git a/library/topology/basis.tex b/library/topology/basis.tex
index 6fc07d3..6fa9fbd 100644
--- a/library/topology/basis.tex
+++ b/library/topology/basis.tex
@@ -47,8 +47,8 @@
\end{definition}
\begin{definition}\label{genopens}
- $\genOpens{B}{X} = \{ U\in\pow{X} \mid \text{for all $x\in U$ there exists $V\in B$
- such that $x\in V\subseteq U$} \}$.
+ $\genOpens{B}{X} = \left\{ U\in\pow{X} \middle| \textbox{for all $x\in U$ there exists $V\in B$
+ \\ such that $x\in V\subseteq U$}\right\}$.
\end{definition}
\begin{lemma}\label{emptyset_in_genopens}
@@ -75,32 +75,25 @@
\end{proof}
-
-
\begin{lemma}\label{inters_in_genopens}
Assume $B$ is a topological basis for $X$.
- Suppose $A, C\in \genOpens{B}{X}$.
-
+ Assume $A, C\in \genOpens{B}{X}$.
Then $(A\inter C) \in \genOpens{B}{X}$.
\end{lemma}
\begin{proof}
-
- Show $(A \inter C) \in \pow{X}$.
- \begin{subproof}
- Omitted.
- \end{subproof}
-
+
+ We have $(A \inter C) \in \pow{X}$ by \cref{genopens,inter_powerset}.
+
Show for all $x\in (A\inter C)$ there exists $W \in B$
such that $x\in W$ and $W \subseteq (A\inter C)$.
\begin{subproof}
Fix $x \in (A\inter C)$.
- $x \in A,C$.
- There exist $V' \in B$ such that $x \in V'$ and $V' \subseteq A$ by \cref{genopens}.
- There exist $V'' \in B$ such that $x \in V''$ and $V'' \subseteq C$ by \cref{genopens}.
- $x \in (V' \inter V'')$.
- There exist $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$.
-
+ Then $x\in A,C$.
+ There exists $V' \in B$ such that $x \in V' \subseteq A$ by \cref{genopens}.
+ There exists $V'' \in B$ such that $x \in V''\subseteq C$ by \cref{genopens}.
+ There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$.
+
Show $W \subseteq (A\inter C)$.
\begin{subproof}
%$W \subseteq v'$ and $W \subseteq V''$.
@@ -111,11 +104,4 @@
%such that $x\in W$ and $W \subseteq (A\inter C)$.
$(A\inter C) \in \genOpens{B}{X}$.
-
-
\end{proof}
-
-
-
-
-
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex
index e467d48..2bbdf09 100644
--- a/library/topology/topological-space.tex
+++ b/library/topology/topological-space.tex
@@ -11,7 +11,6 @@
such that
\begin{enumerate}
\item\label{opens_type} $\opens[X]$ is a family of subsets of $\carrier[X]$.
- \item\label{emptyset_open} $\emptyset\in\opens[X]$.
\item\label{carrier_open} $\carrier[X]\in\opens[X]$.
\item\label{opens_inter} For all $A, B\in \opens[X]$ we have $A\inter B\in\opens[X]$.
\item\label{opens_unions} For all $F\subseteq \opens[X]$ we have $\unions{F}\in\opens[X]$.
@@ -26,6 +25,15 @@
$U$ is open in $X$ iff $U\in\opens[X]$.
\end{abbreviation}
+\begin{proposition}\label{emptyset_open}
+ Let $X$ be a topological space.
+ Then $\emptyset$ is open in $X$.
+\end{proposition}
+\begin{proof}
+ We have $\unions{\emptyset} = \emptyset\subseteq\opens[X]$ by \cref{unions_emptyset,emptyset_subseteq}.
+ Follows by \cref{opens_unions}.
+\end{proof}
+
\begin{proposition}\label{union_open}
Let $X$ be a topological space.
Suppose $A$, $B$ are open.