summaryrefslogtreecommitdiff
path: root/library/set/product.tex
diff options
context:
space:
mode:
authoradelon <22380201+adelon@users.noreply.github.com>2024-02-10 02:22:14 +0100
committeradelon <22380201+adelon@users.noreply.github.com>2024-02-10 02:22:14 +0100
commit442d732696ad431b84f6e5c72b6ee785be4fd968 (patch)
treeb476f395e7e91d67bacb6758bc84914b8711593f /library/set/product.tex
Initial commit
Diffstat (limited to 'library/set/product.tex')
-rw-r--r--library/set/product.tex118
1 files changed, 118 insertions, 0 deletions
diff --git a/library/set/product.tex b/library/set/product.tex
new file mode 100644
index 0000000..bc7d314
--- /dev/null
+++ b/library/set/product.tex
@@ -0,0 +1,118 @@
+\import{set.tex}
+
+\begin{proposition}\label{times_subseteq_left}
+ Suppose $A\subseteq C$. Then $A\times B\subseteq C\times B$.
+\end{proposition}
+\begin{proof}
+ It suffices to show that for all $w\in A\times B$ we have $w\in C\times B$.
+\end{proof}
+
+\begin{proposition}\label{times_subseteq_right}
+ Suppose $B\subseteq D$. Then $A\times B\subseteq A\times D$.
+\end{proposition}
+\begin{proof}
+ It suffices to show that for all $w\in A\times B$ we have $w\in A\times D$.
+\end{proof}
+
+\begin{proposition}\label{inter_times_intro}
+ Suppose $w\in(A\inter B)\times (C\inter D)$.
+ Then $w\in(A\times C)\inter (B\times D)$.
+\end{proposition}
+\begin{proof}
+ Take $a,c$ such that $w = (a, c)$
+ by \cref{times_elem_is_tuple}.
+ Then $a\in A, B$ and $c\in C,D$
+ by \cref{times_tuple_elim,inter}.
+ Thus $w\in (A\times C), (B\times D)$.
+\end{proof}
+
+\begin{proposition}\label{inter_times_elim}
+ Suppose $w\in(A\times C)\inter (B\times D)$.
+ Then $w\in(A\inter B)\times (C\inter D)$.
+\end{proposition}
+\begin{proof}
+ $w\in A\times C$.
+ Take $a, c$ such that $w = (a, c)$.
+ $a\in A, B$ by \cref{inter,times_tuple_elim}.
+ $c\in C, D$ by \cref{inter,times_tuple_elim}.
+ Thus $(a,c) \in (A\inter B)\times (C\inter D)$ by \cref{times,inter_intro}.
+\end{proof}
+
+\begin{proposition}\label{inter_times}
+ $(A\inter B)\times (C\inter D) = (A\times C)\inter (B\times D)$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{inter_times_right}
+ $(X\inter Y)\times Z = (X\times Z)\inter (Y\times Z)$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{inter_times_left}
+ $X\times (Y\inter Z) = (X\times Y)\inter (X\times Z)$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{union_times_intro}
+ Suppose $w\in(A\union B)\times (C\union D)$.
+ Then $w\in(A\times C)\union (B\times D)\union (A\times D)\union (B\times C)$.
+\end{proposition}
+\begin{proof}
+ Take $a,c$ such that $w = (a, c)$.
+ $a\in A$ or $a\in B$ by \cref{union_iff,times_tuple_elim}.
+ $c\in C$ or $c\in D$ by \cref{union_iff,times_tuple_elim}.
+ Thus $(a, c)\in (A\times C)$ or $(a, c)\in (B\times D)$ or $(a, c)\in (A\times D)$ or $(a, c)\in (B\times C)$.
+ Thus $(a, c)\in (A\times C)\union (B\times D)\union (A\times D)\union (B\times C)$.
+\end{proof}
+
+\begin{proposition}\label{union_times_elim}
+ Suppose $w\in(A\times C)\union (B\times D)\union (A\times D)\union (B\times C)$.
+ Then $w\in(A\union B)\times (C\union D)$.
+\end{proposition}
+\begin{proof}
+ \begin{byCase}
+ \caseOf{$w\in(A\times C)$.}
+ Take $a, c$ such that $w = (a, c) \land a\in A\land c\in C$ by \cref{times}.
+ Then $a\in A\union B$ and $c\in C\union D$.
+ Follows by \cref{times_tuple_intro}.
+ \caseOf{$w\in(B\times D)$.}
+ Take $b, d$ such that $w = (b, d) \land b\in B\land d\in D$ by \cref{times}.
+ Then $b\in A\union B$ and $d\in C\union D$.
+ Follows by \cref{times_tuple_intro}.
+ \caseOf{$w\in(A\times D)$.}
+ Take $a, d$ such that $w = (a, d) \land a\in A\land d\in D$ by \cref{times}.
+ Then $a\in A\union B$ and $d\in C\union D$.
+ Follows by \cref{times_tuple_intro}.
+ \caseOf{$w\in(B\times C)$.}
+ Take $b, c$ such that $w = (b, c) \land b\in B\land c\in C$ by \cref{times}.
+ Then $b\in A\union B$ and $c\in C\union D$.
+ Follows by \cref{times_tuple_intro}.
+ \end{byCase}
+\end{proof}
+
+\begin{proposition}\label{union_times}
+ $(A\union B)\times (C\union D) = (A\times C)\union (B\times D)\union (A\times D)\union (B\times C)$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{union_times_left}
+ $(X\union Y)\times Z = (X\times Z)\union (Y\times Z)$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{union_times_right}
+ $X\times (Y\union Z) = (X\times Y)\union (X\times Z)$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}