summaryrefslogtreecommitdiff
path: root/library/set/suc.tex
diff options
context:
space:
mode:
authoradelon <22380201+adelon@users.noreply.github.com>2024-02-10 02:22:14 +0100
committeradelon <22380201+adelon@users.noreply.github.com>2024-02-10 02:22:14 +0100
commit442d732696ad431b84f6e5c72b6ee785be4fd968 (patch)
treeb476f395e7e91d67bacb6758bc84914b8711593f /library/set/suc.tex
Initial commit
Diffstat (limited to 'library/set/suc.tex')
-rw-r--r--library/set/suc.tex70
1 files changed, 70 insertions, 0 deletions
diff --git a/library/set/suc.tex b/library/set/suc.tex
new file mode 100644
index 0000000..3776045
--- /dev/null
+++ b/library/set/suc.tex
@@ -0,0 +1,70 @@
+\import{set/cons.tex}
+\import{set/regularity.tex}
+
+\subsection{Successor}
+
+\begin{definition}\label{suc}
+ $\suc{x} = \cons{x}{x}$.
+\end{definition}
+
+\begin{proposition}\label{suc_intro_self}
+ $x\in\suc{x}$.
+\end{proposition}
+
+\begin{proposition}\label{suc_intro_in}
+ Suppose $x\in y$. Then $x\in\suc{y}$.
+\end{proposition}
+
+\begin{proposition}\label{suc_elim}
+ Suppose $x\in\suc{y}$.
+ Then $x = y$ or $x\in y$.
+\end{proposition}
+
+\begin{proposition}\label{suc_iff}
+ $x\in\suc{y}$ iff $x = y$ or $x\in y$.
+\end{proposition}
+
+\begin{proposition}\label{suc_neq_emptyset}
+ $\suc{x}\neq \emptyset$.
+\end{proposition}
+
+\begin{proposition}\label{suc_subseteq_implies_in}
+ Suppose $\suc{x}\subseteq y$. Then $x\in y$.
+\end{proposition}
+
+\begin{proposition}\label{suc_neq_self}
+ $\suc{x}\neq x$.
+\end{proposition}
+
+\begin{proposition}\label{suc_injective}
+ Suppose $\suc{x} = \suc{y}$. Then $x = y$.
+\end{proposition}
+\begin{proof}
+ Suppose not.
+ $\suc{x}\subseteq \suc{y}$. Hence $x\in\suc{y}$.
+ Then $x\in y$.
+ $\suc{y}\subseteq \suc{x}$. Hence $y\in\suc{x}$.
+ Then $y\in x$.
+ Contradiction.
+\end{proof}
+
+\begin{proposition}\label{subseteq_self_suc_intro}
+ $x\subseteq\suc{x}$.
+\end{proposition}
+
+\begin{proposition}\label{suc_subseteq_intro}
+ Suppose $x\in y$ and $x\subseteq y$.
+ Then $\suc{x}\subseteq y$.
+\end{proposition}
+
+\begin{proposition}\label{suc_subseteq_elim}
+ Suppose $\suc{x}\subseteq y$.
+ Then $x\in y$ and $x\subseteq y$.
+\end{proposition}
+
+\begin{proposition}\label{suc_next_subset}
+ There exists no $z$ such that $x\subset z\subset \suc{x}$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{suc,subset,subseteq,subset_witness,suc_elim}.
+\end{proof}