diff options
Diffstat (limited to 'library/set/suc.tex')
| -rw-r--r-- | library/set/suc.tex | 70 |
1 files changed, 70 insertions, 0 deletions
diff --git a/library/set/suc.tex b/library/set/suc.tex new file mode 100644 index 0000000..3776045 --- /dev/null +++ b/library/set/suc.tex @@ -0,0 +1,70 @@ +\import{set/cons.tex} +\import{set/regularity.tex} + +\subsection{Successor} + +\begin{definition}\label{suc} + $\suc{x} = \cons{x}{x}$. +\end{definition} + +\begin{proposition}\label{suc_intro_self} + $x\in\suc{x}$. +\end{proposition} + +\begin{proposition}\label{suc_intro_in} + Suppose $x\in y$. Then $x\in\suc{y}$. +\end{proposition} + +\begin{proposition}\label{suc_elim} + Suppose $x\in\suc{y}$. + Then $x = y$ or $x\in y$. +\end{proposition} + +\begin{proposition}\label{suc_iff} + $x\in\suc{y}$ iff $x = y$ or $x\in y$. +\end{proposition} + +\begin{proposition}\label{suc_neq_emptyset} + $\suc{x}\neq \emptyset$. +\end{proposition} + +\begin{proposition}\label{suc_subseteq_implies_in} + Suppose $\suc{x}\subseteq y$. Then $x\in y$. +\end{proposition} + +\begin{proposition}\label{suc_neq_self} + $\suc{x}\neq x$. +\end{proposition} + +\begin{proposition}\label{suc_injective} + Suppose $\suc{x} = \suc{y}$. Then $x = y$. +\end{proposition} +\begin{proof} + Suppose not. + $\suc{x}\subseteq \suc{y}$. Hence $x\in\suc{y}$. + Then $x\in y$. + $\suc{y}\subseteq \suc{x}$. Hence $y\in\suc{x}$. + Then $y\in x$. + Contradiction. +\end{proof} + +\begin{proposition}\label{subseteq_self_suc_intro} + $x\subseteq\suc{x}$. +\end{proposition} + +\begin{proposition}\label{suc_subseteq_intro} + Suppose $x\in y$ and $x\subseteq y$. + Then $\suc{x}\subseteq y$. +\end{proposition} + +\begin{proposition}\label{suc_subseteq_elim} + Suppose $\suc{x}\subseteq y$. + Then $x\in y$ and $x\subseteq y$. +\end{proposition} + +\begin{proposition}\label{suc_next_subset} + There exists no $z$ such that $x\subset z\subset \suc{x}$. +\end{proposition} +\begin{proof} + Follows by \cref{suc,subset,subseteq,subset_witness,suc_elim}. +\end{proof} |
