summaryrefslogtreecommitdiff
path: root/library/test.tex
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-03-31 18:57:17 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-03-31 18:57:17 +0200
commit9abb88060e5bb6405e603dcbe499794e3e181040 (patch)
tree72f5d7a039397429056a687573bf905854ea6c07 /library/test.tex
parentffcd13eb8c12f820ec7a49afdcb4b55479443e0d (diff)
Possible_Bug
In File test.tex line 51 could not be proven, error massage is in the new file error.txt
Diffstat (limited to 'library/test.tex')
-rw-r--r--library/test.tex54
1 files changed, 54 insertions, 0 deletions
diff --git a/library/test.tex b/library/test.tex
new file mode 100644
index 0000000..d30bbba
--- /dev/null
+++ b/library/test.tex
@@ -0,0 +1,54 @@
+\import{algebra/semigroup.tex}
+\section{monoid}
+
+\begin{struct}\label{monoid}
+ A monoid $A$ is a semigroup equipped with
+ \begin{enumerate}
+ \item $\neutral$
+ \end{enumerate}
+ such that
+ \begin{enumerate} %muss hier ein enumerate hin
+ \item\label{monoid_type} $\neutral[A]\in \carrier[A]$.
+ \item\label{monoid_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$.
+ \item\label{monoid_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$.
+ \end{enumerate}
+\end{struct}
+
+
+\section{Group}
+
+\begin{struct}\label{group}
+ A group $A$ is a monoid such that
+ \begin{enumerate}
+ \item\label{group_inverse} for all $a \in \carrier[A]$ there exist $b \in \carrier[A]$ such that $\mul[A](a, b) =\neutral[A]$.
+ \end{enumerate}
+\end{struct}
+
+\begin{abbreviation}\label{cfourdot}
+ $a\cdot b = \mul(a,b)$.
+\end{abbreviation}
+
+\begin{lemma}\label{neutral_is_idempotent}
+ Let $G$ be a group. $\neutral[G]$ is a idempotent element of $G$.
+\end{lemma}
+
+\begin{proposition}\label{leftinverse_eq_rightinverse}
+ Let $G$ be a group and assume $a \in G$.
+ Then there exist $b\in G$
+ such that $a \cdot b = \neutral[G]$ and $b \cdot a = \neutral[G]$.
+\end{proposition}
+\begin{proof}
+ There exist $b \in G$ such that $a \cdot b = \neutral[G]$.
+ There exist $c \in G$ such that $b \cdot c = \neutral[G]$.
+ $a \cdot b = \neutral[G]$.
+ $(a \cdot b) \cdot c = (\neutral[G]) \cdot c$.
+ $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
+ $a \cdot \neutral[G] = \neutral[G] \cdot c$.
+ $c = c \cdot \neutral[G]$.
+ $c = \neutral[G] \cdot c$.
+ $a \cdot \neutral[G] = c \cdot \neutral[G]$.
+ $a \cdot \neutral[G] = c$ by \cref{monoid_right}.
+ $a = c$ by \cref{monoid_right}.
+ $b \cdot a = b \cdot c$.
+ $b \cdot a = \neutral[G]$.
+\end{proof} \ No newline at end of file