diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-05-28 16:26:19 +0200 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2024-05-28 16:26:19 +0200 |
| commit | a6a83d15a866d7ba40dfc6b733cea14314da3b25 (patch) | |
| tree | f41fd89c9e4f40f70201546073c19bccf19afe60 /library/topology/basis.tex | |
| parent | a5deeef9c3214f0f2ccd90789f5344a88544d65b (diff) | |
| parent | ecfb1a66f2159e078199e54edf8a80004c28195a (diff) | |
Merge branch 'main' into main
Diffstat (limited to 'library/topology/basis.tex')
| -rw-r--r-- | library/topology/basis.tex | 69 |
1 files changed, 69 insertions, 0 deletions
diff --git a/library/topology/basis.tex b/library/topology/basis.tex index d8cfeaf..15910f9 100644 --- a/library/topology/basis.tex +++ b/library/topology/basis.tex @@ -1,4 +1,6 @@ \import{topology/topological-space.tex} +\import{set.tex} +\import{set/powerset.tex} \subsection{Topological basis} @@ -48,3 +50,70 @@ $\genOpens{B}{X} = \left\{ U\in\pow{X} \middle| \textbox{for all $x\in U$ there exists $V\in B$ \\ such that $x\in V\subseteq U$}\right\}$. \end{definition} + +\begin{lemma}\label{emptyset_in_genopens} + Assume $B$ is a topological basis for $X$. + $\emptyset \in \genOpens{B}{X}$. +\end{lemma} + +\begin{lemma}\label{all_is_in_genopens} + Assume $B$ is a topological basis for $X$. + $X \in \genOpens{B}{X}$. +\end{lemma} +\begin{proof} + $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}. + $\unions{B} \in \genOpens{B}{X}$. + $X \subseteq \unions{B}$. +\end{proof} + +\begin{lemma}\label{union_in_genopens} + Assume $B$ is a topological basis for $X$. + For all $F\subseteq \genOpens{B}{X}$ we have $\unions{F}\in\genOpens{B}{X}$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + + + + +\begin{lemma}\label{inters_in_genopens} + Assume $B$ is a topological basis for $X$. + %For all $A, C$ + If $A\in \genOpens{B}{X}$ and $C\in \genOpens{B}{X}$ then $(A\inter C) \in \genOpens{B}{X}$. +\end{lemma} +\begin{proof} + + Show $(A \inter C) \in \pow{X}$. + \begin{subproof} + $(A \inter C) \subseteq X$ by assumption. + \end{subproof} + Therefore for all $A, C \in \genOpens{B}{X}$ we have $(A \inter C) \in \pow{X}$. + + + Show for all $x\in (A\inter C)$ there exists $W \in B$ + such that $x\in W$ and $W \subseteq (A\inter C)$. + \begin{subproof} + Fix $x \in (A\inter C)$. + There exist $V' \in B$ such that $x \in V'$ and $V' \subseteq A$ by assumption. %TODO: Warum muss hier by assumtion hin? + There exist $V'' \in B$ such that $x \in V''$ and $V'' \subseteq C$ by assumption. + There exist $W \in B$ such that $x \in W$ and $W \subseteq v'$ and $W \subseteq V''$ by assumption. + + Show $W \subseteq (A\inter C)$. + \begin{subproof} + %$W \subseteq v'$ and $W \subseteq V''$. + For all $y \in W$ we have $y \in V'$ and $y \in V''$ by assumption. + \end{subproof} + \end{subproof} + %Therefore for all $A, C, x$ such that $A \in \genOpens{B}{X}$ and $C \in \genOpens{B}{X}$ and $x \in (A \inter C)$ we have there exists $W \in B$ + %such that $x\in W$ and $W \subseteq (A\inter C)$. + + $(A\inter C) \in \genOpens{B}{X}$ by assumption. + + +\end{proof} + + + + + |
