summaryrefslogtreecommitdiff
path: root/library/topology/basis.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/basis.tex')
-rw-r--r--library/topology/basis.tex69
1 files changed, 69 insertions, 0 deletions
diff --git a/library/topology/basis.tex b/library/topology/basis.tex
index d8cfeaf..15910f9 100644
--- a/library/topology/basis.tex
+++ b/library/topology/basis.tex
@@ -1,4 +1,6 @@
\import{topology/topological-space.tex}
+\import{set.tex}
+\import{set/powerset.tex}
\subsection{Topological basis}
@@ -48,3 +50,70 @@
$\genOpens{B}{X} = \left\{ U\in\pow{X} \middle| \textbox{for all $x\in U$ there exists $V\in B$
\\ such that $x\in V\subseteq U$}\right\}$.
\end{definition}
+
+\begin{lemma}\label{emptyset_in_genopens}
+ Assume $B$ is a topological basis for $X$.
+ $\emptyset \in \genOpens{B}{X}$.
+\end{lemma}
+
+\begin{lemma}\label{all_is_in_genopens}
+ Assume $B$ is a topological basis for $X$.
+ $X \in \genOpens{B}{X}$.
+\end{lemma}
+\begin{proof}
+ $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
+ $\unions{B} \in \genOpens{B}{X}$.
+ $X \subseteq \unions{B}$.
+\end{proof}
+
+\begin{lemma}\label{union_in_genopens}
+ Assume $B$ is a topological basis for $X$.
+ For all $F\subseteq \genOpens{B}{X}$ we have $\unions{F}\in\genOpens{B}{X}$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+
+
+
+\begin{lemma}\label{inters_in_genopens}
+ Assume $B$ is a topological basis for $X$.
+ %For all $A, C$
+ If $A\in \genOpens{B}{X}$ and $C\in \genOpens{B}{X}$ then $(A\inter C) \in \genOpens{B}{X}$.
+\end{lemma}
+\begin{proof}
+
+ Show $(A \inter C) \in \pow{X}$.
+ \begin{subproof}
+ $(A \inter C) \subseteq X$ by assumption.
+ \end{subproof}
+ Therefore for all $A, C \in \genOpens{B}{X}$ we have $(A \inter C) \in \pow{X}$.
+
+
+ Show for all $x\in (A\inter C)$ there exists $W \in B$
+ such that $x\in W$ and $W \subseteq (A\inter C)$.
+ \begin{subproof}
+ Fix $x \in (A\inter C)$.
+ There exist $V' \in B$ such that $x \in V'$ and $V' \subseteq A$ by assumption. %TODO: Warum muss hier by assumtion hin?
+ There exist $V'' \in B$ such that $x \in V''$ and $V'' \subseteq C$ by assumption.
+ There exist $W \in B$ such that $x \in W$ and $W \subseteq v'$ and $W \subseteq V''$ by assumption.
+
+ Show $W \subseteq (A\inter C)$.
+ \begin{subproof}
+ %$W \subseteq v'$ and $W \subseteq V''$.
+ For all $y \in W$ we have $y \in V'$ and $y \in V''$ by assumption.
+ \end{subproof}
+ \end{subproof}
+ %Therefore for all $A, C, x$ such that $A \in \genOpens{B}{X}$ and $C \in \genOpens{B}{X}$ and $x \in (A \inter C)$ we have there exists $W \in B$
+ %such that $x\in W$ and $W \subseteq (A\inter C)$.
+
+ $(A\inter C) \in \genOpens{B}{X}$ by assumption.
+
+
+\end{proof}
+
+
+
+
+