diff options
Diffstat (limited to 'library/topology')
| -rw-r--r-- | library/topology/basis.tex | 69 | ||||
| -rw-r--r-- | library/topology/metric-space.tex | 152 | ||||
| -rw-r--r-- | library/topology/order-topology.tex | 33 |
3 files changed, 254 insertions, 0 deletions
diff --git a/library/topology/basis.tex b/library/topology/basis.tex index d8cfeaf..15910f9 100644 --- a/library/topology/basis.tex +++ b/library/topology/basis.tex @@ -1,4 +1,6 @@ \import{topology/topological-space.tex} +\import{set.tex} +\import{set/powerset.tex} \subsection{Topological basis} @@ -48,3 +50,70 @@ $\genOpens{B}{X} = \left\{ U\in\pow{X} \middle| \textbox{for all $x\in U$ there exists $V\in B$ \\ such that $x\in V\subseteq U$}\right\}$. \end{definition} + +\begin{lemma}\label{emptyset_in_genopens} + Assume $B$ is a topological basis for $X$. + $\emptyset \in \genOpens{B}{X}$. +\end{lemma} + +\begin{lemma}\label{all_is_in_genopens} + Assume $B$ is a topological basis for $X$. + $X \in \genOpens{B}{X}$. +\end{lemma} +\begin{proof} + $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}. + $\unions{B} \in \genOpens{B}{X}$. + $X \subseteq \unions{B}$. +\end{proof} + +\begin{lemma}\label{union_in_genopens} + Assume $B$ is a topological basis for $X$. + For all $F\subseteq \genOpens{B}{X}$ we have $\unions{F}\in\genOpens{B}{X}$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + + + + +\begin{lemma}\label{inters_in_genopens} + Assume $B$ is a topological basis for $X$. + %For all $A, C$ + If $A\in \genOpens{B}{X}$ and $C\in \genOpens{B}{X}$ then $(A\inter C) \in \genOpens{B}{X}$. +\end{lemma} +\begin{proof} + + Show $(A \inter C) \in \pow{X}$. + \begin{subproof} + $(A \inter C) \subseteq X$ by assumption. + \end{subproof} + Therefore for all $A, C \in \genOpens{B}{X}$ we have $(A \inter C) \in \pow{X}$. + + + Show for all $x\in (A\inter C)$ there exists $W \in B$ + such that $x\in W$ and $W \subseteq (A\inter C)$. + \begin{subproof} + Fix $x \in (A\inter C)$. + There exist $V' \in B$ such that $x \in V'$ and $V' \subseteq A$ by assumption. %TODO: Warum muss hier by assumtion hin? + There exist $V'' \in B$ such that $x \in V''$ and $V'' \subseteq C$ by assumption. + There exist $W \in B$ such that $x \in W$ and $W \subseteq v'$ and $W \subseteq V''$ by assumption. + + Show $W \subseteq (A\inter C)$. + \begin{subproof} + %$W \subseteq v'$ and $W \subseteq V''$. + For all $y \in W$ we have $y \in V'$ and $y \in V''$ by assumption. + \end{subproof} + \end{subproof} + %Therefore for all $A, C, x$ such that $A \in \genOpens{B}{X}$ and $C \in \genOpens{B}{X}$ and $x \in (A \inter C)$ we have there exists $W \in B$ + %such that $x\in W$ and $W \subseteq (A\inter C)$. + + $(A\inter C) \in \genOpens{B}{X}$ by assumption. + + +\end{proof} + + + + + diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex new file mode 100644 index 0000000..1c6a0ca --- /dev/null +++ b/library/topology/metric-space.tex @@ -0,0 +1,152 @@ +\import{topology/topological-space.tex} +\import{numbers.tex} +\import{function.tex} +\import{set/powerset.tex} +\import{topology/basis.tex} + +\section{Metric Spaces} + +\begin{definition}\label{metric} + $f$ is a metric on $M$ iff $f$ is a function from $M \times M$ to $\reals$ and + for all $x,y,z \in M$ we have + $f(x,x) = \zero$ and + $f(x,y) = f(y,x)$ and + $f(x,y) \leq f(x,z) + f(z,y)$ and + if $x \neq y$ then $\zero < f(x,y)$. +\end{definition} + +\begin{definition}\label{open_ball} + $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric on $M$ and $f(x,z) < r$ } \}$. +\end{definition} + + + +%\begin{definition}\label{induced_topology} +% $O$ is the induced topology of $d$ in $M$ iff +% $O \subseteq \pow{M}$ and +% $d$ is a metric on $M$ and +% for all $x,r,A,B,C$ +% such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ +% we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. +%\end{definition} + +%\begin{definition} +% $\projcetfirst{A} = \{a \mid \exists x \in X \text{there exist $x \i } \}$ +%\end{definition} + +\begin{definition}\label{set_of_balls} + $\balls{d}{M} = \{ O \in \pow{M} \mid \text{there exists $x,r$ such that $r \in \reals$ and $x \in M$ and $O = \openball{r}{x}{d}$ } \}$. +\end{definition} + + +%\begin{definition}\label{toindsas} +% $\metricopens{d}{M} = \{O \in \pow{M} \mid \text{ +% $d$ is a metric on $M$ and +% for all $x,r,A,B,C$ +% such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ +% we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. +% } \}$. +% +%\end{definition} + +\begin{definition}\label{metricopens} + $\metricopens{d}{M} = \genOpens{\balls{d}{M}}{M}$. +\end{definition} + + +\begin{theorem} + Let $d$ be a metric on $M$. + $M$ is a topological space. +\end{theorem} + + + + +%TODO: \metric_opens{d} = {hier die construction für topology} DONE. +%TODO: Die induzierte topology definieren und dann in struct verwenden. + + +\begin{struct}\label{metric_space} + A metric space $M$ is a onesorted structure equipped with + \begin{enumerate} + \item $\metric$ + \end{enumerate} + such that + \begin{enumerate} + \item \label{metric_space_metric} $\metric[M]$ is a metric on $M$. + \item \label{metric_space_topology} $M$ is a topological space. + \item \label{metric_space_opens} $\metricopens{ \metric[M] }{M} = \opens[M]$. + \end{enumerate} +\end{struct} + +\begin{abbreviation}\label{descriptive_syntax_for_openball1} + $U$ is an open ball in $M$ of $x$ with radius $r$ iff $x \in M$ and $M$ is a metric space and $U = \openball{r}{x}{\metric[M]}$. +\end{abbreviation} + +\begin{abbreviation}\label{descriptive_syntax_for_openball2} + $U$ is an open ball in $M$ iff there exist $x \in M$ such that there exist $r \in \reals$ such that $U$ is an open ball in $M$ of $x$ with radius $r$. +\end{abbreviation} + +\begin{lemma}\label{union_of_open_balls_is_open} + Let $M$ be a metric space. + For all $U,V \subseteq M$ if $U$, $V$ are open balls in $M$ then $U \union V$ is open in $M$. +\end{lemma} + + +%\begin{definition}\label{lenght_of_interval} %TODO: take minus if its implemented +% $\lenghtinterval{x}{y} = r$ +%\end{definition} + + + + + + +\begin{lemma}\label{metric_implies_topology} + Let $M$ be a set, and let $f$ be a metric on $M$. + Then $M$ is a metric space. +\end{lemma} + + + + + +%\begin{struct}\label{metric_space} +% A metric space $M$ is a onesorted structure equipped with +% \begin{enumerate} +% \item $\metric$ +% \end{enumerate} +% such that +% \begin{enumerate} +% \item \label{metric_space_d} $\metric[M]$ is a function from $M \times M$ to $\reals$. +% \item \label{metric_space_distence_of_a_point} $\metric[M](x,x) = \zero$. +% \item \label{metric_space_positiv} for all $x,y \in M$ if $x \neq y$ then $\zero < \metric[M](x,y)$. +% \item \label{metric_space_symetrie} $\metric[M](x,y) = \metric[M](y,x)$. +% \item \label{metric_space_triangle_equation} for all $x,y,z \in M$ $\metric[M](x,y) < \metric[M](x,z) + \metric[M](z,y)$ or $\metric[M](x,y) = \metric[M](x,z) + \metric[M](z,y)$. +% \item \label{metric_space_topology} $M$ is a topological space. +% \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\{z \in M \mid \metric[M](x,z) < r\} \in \opens$. +% \end{enumerate} +%\end{struct} + +%\begin{definition}\label{open_ball} +% $\openball{r}{x}{M} = \{z \in M \mid \metric(x,z) < r\}$. +%\end{definition} + +%\begin{proposition}\label{open_ball_is_open} +% Let $M$ be a metric space,let $r \in \reals $, let $x$ be an element of $M$. +% Then $\openball{r}{x}{M} \in \opens[M]$. +%\end{proposition} + + + + + + +%TODO: - Basis indudiert topology lemma +% - Offe Bälle sind basis + +% Was danach kommen soll bleibt offen, vll buch oder in proof wiki +% Trennungsaxiom, + +% Notaionen aufräumen damit das gut gemercht werden kann. + diff --git a/library/topology/order-topology.tex b/library/topology/order-topology.tex new file mode 100644 index 0000000..2dd026d --- /dev/null +++ b/library/topology/order-topology.tex @@ -0,0 +1,33 @@ +\import{topology/topological-space.tex} +\import{order/order.tex} + +\section{Order Topology} + +\begin{abbreviation}\label{open_interval} + $z \in \oointervalof{x}{y}$ iff $x \mathrel{R} y$ and $x \mathrel{R} z$ and $z \mathrel{R} y$. + %$\oointervalof{x}{y}{X} = \{ z \mid x \in X, y \in X, z \in X x \mathrel{R} y \wedge x \mathrel{R} z \wedge z \mathrel{R} y\}$. +\end{abbreviation} + +\begin{struct}\label{order_topology} + A ordertopology space $X$ is a onesorted structure equipped with + \begin{enumerate} + \item $<$ + \end{enumerate} + such that + \begin{enumerate} + \item \label{order_topology_1} $<$ is a strict order on $X$ + \item \label{order_topology_2} + \item \label{order_topology_3} + \item \label{order_topology_4} + \item \label{order_topology} + \item \label{order_topology} + \item \label{order_topology} + \end{enumerate} +\end{struct} + + + +%\begin{definition}\label{order_topology} +% $X$ has the order topology iff for all $x,y \in X$ $X$ has a strict order $R$ and $\oointervalof{x}{y}{X} \in \opens[X]$ and $X$ is a topological space. +% %$O$ is the order Topology on $X$ iff for all $x,y \in X$ $X$ has a strict order $R$ and $(x,y) \in O$ and $O$ is . +%\end{definition} |
