summaryrefslogtreecommitdiff
path: root/library/topology/separation.tex
diff options
context:
space:
mode:
authoradelon <22380201+adelon@users.noreply.github.com>2025-07-02 20:28:22 +0200
committerGitHub <noreply@github.com>2025-07-02 20:28:22 +0200
commit793849dd0b20bc70ea0e0ecfd5008a3806eca0d9 (patch)
tree280949f358a695c5471212cc5b22950399d8cd57 /library/topology/separation.tex
parent3caadfbe0fdb417b8edebc17002ddafe795a4bcc (diff)
parent8fd49ae84e8cc4524c19b20fa0aabb4e77a46cd5 (diff)
Merge pull request #2 from Simon-Kor/main
Merge (finally)
Diffstat (limited to 'library/topology/separation.tex')
-rw-r--r--library/topology/separation.tex171
1 files changed, 165 insertions, 6 deletions
diff --git a/library/topology/separation.tex b/library/topology/separation.tex
index f70cb50..aaa3907 100644
--- a/library/topology/separation.tex
+++ b/library/topology/separation.tex
@@ -1,5 +1,7 @@
\import{topology/topological-space.tex}
+\import{set.tex}
+\subsection{Separation}\label{form_sec_separation}
% T0 separation
\begin{definition}\label{is_kolmogorov}
@@ -73,14 +75,30 @@
\begin{proposition}\label{teeone_implies_singletons_closed}
Let $X$ be a \teeone-space.
- Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$.
+ Assume $x \in \carrier[X]$.
+ Then $\{x\}$ is closed in $X$.
\end{proposition}
\begin{proof}
Omitted.
- % TODO
- % Choose for every y distinct from x and open subset U_y containing y but not x.
- % The union U of all the U_y is open.
- % {x} is the complement of U in \carrier[X].
+ %Let $V = \{ U \in \opens[X] \mid x \notin U\}$.
+ %For all $y \in \carrier[X]$ such that $x \neq y$ there exist $U \in \opens[X]$ such that $x \notin U \ni y$ by \cref{carrier_open,teeone}.
+ %For all $y \in \carrier[X]$ such that $y \neq x$ there exists $U \in V$ such that $y \in U$.
+ %
+ %$\unions{V} \in \opens[X]$.
+ %For all $y \in \carrier[X]$ such that $x \neq y$ we have $y \in \unions{V}$.
+ %We show that $\carrier[X] \setminus \{x\} = \unions{V}$.
+ %\begin{subproof}
+ % We show that for all $y \in \carrier[X] \setminus \{x\}$ we have $y \in \unions{V}$.
+ % \begin{subproof}
+ % Fix $y \in \carrier[X] \setminus \{x\}$.
+ % $y \neq x$.
+ % $y \in \carrier[X]$.
+ % $y \in \unions{V}$.
+ % \end{subproof}
+ % For all $y \in \unions{V}$ we have $y \notin \{x\}$.
+ % For all $y \in \unions{V}$ we have $y \in \carrier[X] \setminus \{x\}$.
+ % Follows by set extensionality.
+ %\end{subproof}
\end{proof}
%
% Conversely, if \{x\} is open, then for any y distinct from x we can use
@@ -120,5 +138,146 @@
Then $X$ is a \teeone-space.
\end{proposition}
\begin{proof}
- Omitted. % TODO
+ We show that for all $x,y\in\carrier[X]$ such that $x\neq y$
+ there exist $U, V\in\opens[X]$ such that
+ $U\ni x\notin V$ and $V\ni y\notin U$.
+ \begin{subproof}
+ $X$ is hausdorff.
+ For all $x,y\in\carrier[X]$ such that $x\neq y$
+ there exist $U, V\in\opens[X]$ such that
+ $x\in U$ and $y\in V$ and $U$ is disjoint from $V$.
+ \end{subproof}
+\end{proof}
+
+\begin{definition}\label{is_regular}
+ $X$ is regular iff for all $C,p$ such that $p \in \carrier[X]$ and $p \notin C \in \closeds{X}$ we have there exists $U,C \in \opens[X]$ such that $p \in U$ and $C \subseteq V$ and $U \inter V = \emptyset$.
+\end{definition}
+
+\begin{abbreviation}\label{regular_space}
+ $X$ is a regular space iff $X$ is a topological space and $X$ is regular.
+\end{abbreviation}
+
+
+\begin{abbreviation}\label{teethree}
+ $X$ is \teethree\ iff $X$ is regular and $X$ is \teezero\ .
+\end{abbreviation}
+
+\begin{abbreviation}\label{teethree_space}
+ $X$ is a \teethree-space iff $X$ is a topological space and $X$ is \teethree\ .
+\end{abbreviation}
+
+\begin{proposition}\label{teethree_implies_closed_neighbourhood_in_open}
+ Let $X$ be a topological space.
+ Suppose $X$ is inhabited.
+ Suppose $X$ is \teethree\ .
+ For all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+ %%Suppose $X$ is regular and kolmogorov.
+ %Fix $U \in \opens[X]$.
+ %Fix $x \in U$.
+ %Let $C = \carrier[X] \setminus U$.
+ %Then $C \in \closeds{X}$.
+ %$x \notin C$.
+ %$x \in \carrier[X]$.
+ %We show that there exists $A,B \in \opens[X]$ such that $x \in B$ and $C \subseteq A$ and $A \inter B = \emptyset$.
+ %We show that $B \subseteq (\carrier[X] \setminus A)$.
+ %$(\carrier[X] \setminus A) \subseteq (\carrier[X] \setminus (\carrier[X] \setminus U))$.
+ %$(\carrier[X] \setminus (\carrier[X] \setminus U)) = U$.
+ %$x \in B \subseteq (\carrier[X] \setminus A) \subseteq U$.
+ %Let $N = (\carrier[X] \setminus A)$.
+ %Then $N \in \closeds{X}$ and $x \in N$ and $N \subseteq U$.
+ %$N \in \neighbourhoods{x}{X}$.
+\end{proof}
+
+\begin{proposition}\label{teethree_iff_each_closed_is_intersection_of_its_closed_neighborhoods}
+ Let $X$ be a topological space.
+ Suppose $X$ is inhabited.
+ $X$ is \teethree\ iff for all $H \in \closeds{X}$ such that $F = \{ N \in \neighbourhoodsSet{H}{X} \mid N \in \closeds{X}\}$ we have $H = \inters{F}$.
+\end{proposition}
+\begin{proof}
+ We show that if $X$ is \teethree\ then for all $H \in \closeds{X}$ such that $F = \{ N \in \neighbourhoodsSet{H}{X} \mid N \in \closeds{X}\}$ we have $H = \inters{F}$.
+ \begin{subproof}
+ %For all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$.
+ Omitted.
+ \end{subproof}
+
+ We show that if for all $H \in \closeds{X}$ such that $F = \{ N \in \neighbourhoodsSet{H}{X} \mid N \in \closeds{X}\}$ we have $H = \inters{F}$ then $X$ is \teethree\ .
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
\end{proof}
+
+
+\begin{proposition}\label{teethree_iff_closed_neighbourhood_in_open}
+ Let $X$ be a topological space.
+ Suppose $X$ is inhabited.
+ $X$ is \teethree\ iff for all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+ %Follows by \cref{teethree_iff_each_closed_is_intersection_of_its_closed_neighborhoods,teethree_implies_closed_neighbourhood_in_open}.
+\end{proof}
+
+
+\begin{proposition}\label{teethree_space_is_teetwo_space}
+ Let $X$ be a \teethree-space.
+ Suppose $X$ is inhabited.
+ Then $X$ is a \teetwo-space.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+ For all $x,y \in \carrier[X]$ such that $x \neq y$ we have $x \notin \{y\}$.
+ It suffices to show that $X$ is hausdorff.
+ It suffices to show that for all $x \in \carrier[X]$ we have for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$.
+ Fix $x \in \carrier[X]$.
+ It suffices to show that for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$.
+ Fix $y \in \carrier[X]$.
+
+
+ We show that there exist $U,V,C$ such that $U,V \in \opens[X]$ and $C\in \closeds{X}$ and $x \in U$ and $y \in C \subseteq V$ and $U$ is disjoint from $V$.
+ \begin{subproof}
+ There exist $C' \in \closeds{X}$ such that $x \in \carrier[X]$ and $x \notin C' \in \closeds{X}$ and there exists $U',V' \in \opens[X]$ such that $x \in U'$ and $C' \subseteq V'$ and $U' \inter V' = \emptyset$.
+ There exists $U',V' \in \opens[X]$ such that $x \in U'$ and $C' \subseteq V'$ and $U' \inter V' = \emptyset$.
+ $U'$ is disjoint from $V'$.
+ $x \in U'$.
+ $x \notin C' \subseteq V'$.
+ $U',V' \in \opens[X]$.
+ $C' \in \closeds{X}$.
+ We show that there exist $K \in \closeds{X}$ such that $x \notin K \ni y$.
+ \begin{subproof}
+ $X$ is Kolmogorov.
+ For all $x',y'\in\carrier[X]$ such that $x'\neq y'$ there exist $H\in\opens[X]$ such that $x'\in H\not\ni y'$ or $x'\notin H\ni y'$.
+ we show that there exist $H \in \opens[X]$ such that $x \notin H \ni y$ or $y \notin H \ni x$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+ $H \subseteq \carrier[X]$ by \cref{opens_type,subseteq}.
+ Since $\carrier[X] \ni x \notin H$ or $\carrier[X] \ni y \notin H$, we have there exist $c \in H$.
+ Then $H \neq \carrier[X]$.
+ Since $y \in H$ or $x \in H$, we have $H \neq \emptyset$.
+ Let $K = \carrier[X] \setminus H$.
+ $K$ is inhabited.
+ $K \in \closeds{X}$ by \cref{complement_of_open_is_closed}.
+ $x \notin K \ni y$ or $y \notin K \ni x$.
+ \begin{byCase}
+ \caseOf{$y \in K$.} Trivial.
+ \caseOf{$y \notin K$.}
+ Then there exist $U'',V'' \in \opens[X]$ such that $x \in U''$ and $K \subseteq V''$ and $U'' \inter V'' = \emptyset$ by \cref{is_regular}.
+ Let $K' = \carrier[X] \setminus U''$.
+ $x \in K'$.
+ $K' \in \closeds{X}$.
+ \end{byCase}
+
+
+ \end{subproof}
+
+ Follows by assumption.
+ \end{subproof}
+ $y \in V$ by assumption.
+ Follows by assumption.
+
+
+%\end{proof}