diff options
Diffstat (limited to 'library/topology/separation.tex')
| -rw-r--r-- | library/topology/separation.tex | 171 |
1 files changed, 165 insertions, 6 deletions
diff --git a/library/topology/separation.tex b/library/topology/separation.tex index f70cb50..aaa3907 100644 --- a/library/topology/separation.tex +++ b/library/topology/separation.tex @@ -1,5 +1,7 @@ \import{topology/topological-space.tex} +\import{set.tex} +\subsection{Separation}\label{form_sec_separation} % T0 separation \begin{definition}\label{is_kolmogorov} @@ -73,14 +75,30 @@ \begin{proposition}\label{teeone_implies_singletons_closed} Let $X$ be a \teeone-space. - Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$. + Assume $x \in \carrier[X]$. + Then $\{x\}$ is closed in $X$. \end{proposition} \begin{proof} Omitted. - % TODO - % Choose for every y distinct from x and open subset U_y containing y but not x. - % The union U of all the U_y is open. - % {x} is the complement of U in \carrier[X]. + %Let $V = \{ U \in \opens[X] \mid x \notin U\}$. + %For all $y \in \carrier[X]$ such that $x \neq y$ there exist $U \in \opens[X]$ such that $x \notin U \ni y$ by \cref{carrier_open,teeone}. + %For all $y \in \carrier[X]$ such that $y \neq x$ there exists $U \in V$ such that $y \in U$. + % + %$\unions{V} \in \opens[X]$. + %For all $y \in \carrier[X]$ such that $x \neq y$ we have $y \in \unions{V}$. + %We show that $\carrier[X] \setminus \{x\} = \unions{V}$. + %\begin{subproof} + % We show that for all $y \in \carrier[X] \setminus \{x\}$ we have $y \in \unions{V}$. + % \begin{subproof} + % Fix $y \in \carrier[X] \setminus \{x\}$. + % $y \neq x$. + % $y \in \carrier[X]$. + % $y \in \unions{V}$. + % \end{subproof} + % For all $y \in \unions{V}$ we have $y \notin \{x\}$. + % For all $y \in \unions{V}$ we have $y \in \carrier[X] \setminus \{x\}$. + % Follows by set extensionality. + %\end{subproof} \end{proof} % % Conversely, if \{x\} is open, then for any y distinct from x we can use @@ -120,5 +138,146 @@ Then $X$ is a \teeone-space. \end{proposition} \begin{proof} - Omitted. % TODO + We show that for all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U, V\in\opens[X]$ such that + $U\ni x\notin V$ and $V\ni y\notin U$. + \begin{subproof} + $X$ is hausdorff. + For all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U, V\in\opens[X]$ such that + $x\in U$ and $y\in V$ and $U$ is disjoint from $V$. + \end{subproof} +\end{proof} + +\begin{definition}\label{is_regular} + $X$ is regular iff for all $C,p$ such that $p \in \carrier[X]$ and $p \notin C \in \closeds{X}$ we have there exists $U,C \in \opens[X]$ such that $p \in U$ and $C \subseteq V$ and $U \inter V = \emptyset$. +\end{definition} + +\begin{abbreviation}\label{regular_space} + $X$ is a regular space iff $X$ is a topological space and $X$ is regular. +\end{abbreviation} + + +\begin{abbreviation}\label{teethree} + $X$ is \teethree\ iff $X$ is regular and $X$ is \teezero\ . +\end{abbreviation} + +\begin{abbreviation}\label{teethree_space} + $X$ is a \teethree-space iff $X$ is a topological space and $X$ is \teethree\ . +\end{abbreviation} + +\begin{proposition}\label{teethree_implies_closed_neighbourhood_in_open} + Let $X$ be a topological space. + Suppose $X$ is inhabited. + Suppose $X$ is \teethree\ . + For all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$. +\end{proposition} +\begin{proof} + Omitted. + %%Suppose $X$ is regular and kolmogorov. + %Fix $U \in \opens[X]$. + %Fix $x \in U$. + %Let $C = \carrier[X] \setminus U$. + %Then $C \in \closeds{X}$. + %$x \notin C$. + %$x \in \carrier[X]$. + %We show that there exists $A,B \in \opens[X]$ such that $x \in B$ and $C \subseteq A$ and $A \inter B = \emptyset$. + %We show that $B \subseteq (\carrier[X] \setminus A)$. + %$(\carrier[X] \setminus A) \subseteq (\carrier[X] \setminus (\carrier[X] \setminus U))$. + %$(\carrier[X] \setminus (\carrier[X] \setminus U)) = U$. + %$x \in B \subseteq (\carrier[X] \setminus A) \subseteq U$. + %Let $N = (\carrier[X] \setminus A)$. + %Then $N \in \closeds{X}$ and $x \in N$ and $N \subseteq U$. + %$N \in \neighbourhoods{x}{X}$. +\end{proof} + +\begin{proposition}\label{teethree_iff_each_closed_is_intersection_of_its_closed_neighborhoods} + Let $X$ be a topological space. + Suppose $X$ is inhabited. + $X$ is \teethree\ iff for all $H \in \closeds{X}$ such that $F = \{ N \in \neighbourhoodsSet{H}{X} \mid N \in \closeds{X}\}$ we have $H = \inters{F}$. +\end{proposition} +\begin{proof} + We show that if $X$ is \teethree\ then for all $H \in \closeds{X}$ such that $F = \{ N \in \neighbourhoodsSet{H}{X} \mid N \in \closeds{X}\}$ we have $H = \inters{F}$. + \begin{subproof} + %For all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$. + Omitted. + \end{subproof} + + We show that if for all $H \in \closeds{X}$ such that $F = \{ N \in \neighbourhoodsSet{H}{X} \mid N \in \closeds{X}\}$ we have $H = \inters{F}$ then $X$ is \teethree\ . + \begin{subproof} + Omitted. + \end{subproof} \end{proof} + + +\begin{proposition}\label{teethree_iff_closed_neighbourhood_in_open} + Let $X$ be a topological space. + Suppose $X$ is inhabited. + $X$ is \teethree\ iff for all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$. +\end{proposition} +\begin{proof} + Omitted. + %Follows by \cref{teethree_iff_each_closed_is_intersection_of_its_closed_neighborhoods,teethree_implies_closed_neighbourhood_in_open}. +\end{proof} + + +\begin{proposition}\label{teethree_space_is_teetwo_space} + Let $X$ be a \teethree-space. + Suppose $X$ is inhabited. + Then $X$ is a \teetwo-space. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + For all $x,y \in \carrier[X]$ such that $x \neq y$ we have $x \notin \{y\}$. + It suffices to show that $X$ is hausdorff. + It suffices to show that for all $x \in \carrier[X]$ we have for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$. + Fix $x \in \carrier[X]$. + It suffices to show that for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$. + Fix $y \in \carrier[X]$. + + + We show that there exist $U,V,C$ such that $U,V \in \opens[X]$ and $C\in \closeds{X}$ and $x \in U$ and $y \in C \subseteq V$ and $U$ is disjoint from $V$. + \begin{subproof} + There exist $C' \in \closeds{X}$ such that $x \in \carrier[X]$ and $x \notin C' \in \closeds{X}$ and there exists $U',V' \in \opens[X]$ such that $x \in U'$ and $C' \subseteq V'$ and $U' \inter V' = \emptyset$. + There exists $U',V' \in \opens[X]$ such that $x \in U'$ and $C' \subseteq V'$ and $U' \inter V' = \emptyset$. + $U'$ is disjoint from $V'$. + $x \in U'$. + $x \notin C' \subseteq V'$. + $U',V' \in \opens[X]$. + $C' \in \closeds{X}$. + We show that there exist $K \in \closeds{X}$ such that $x \notin K \ni y$. + \begin{subproof} + $X$ is Kolmogorov. + For all $x',y'\in\carrier[X]$ such that $x'\neq y'$ there exist $H\in\opens[X]$ such that $x'\in H\not\ni y'$ or $x'\notin H\ni y'$. + we show that there exist $H \in \opens[X]$ such that $x \notin H \ni y$ or $y \notin H \ni x$. + \begin{subproof} + Omitted. + \end{subproof} + $H \subseteq \carrier[X]$ by \cref{opens_type,subseteq}. + Since $\carrier[X] \ni x \notin H$ or $\carrier[X] \ni y \notin H$, we have there exist $c \in H$. + Then $H \neq \carrier[X]$. + Since $y \in H$ or $x \in H$, we have $H \neq \emptyset$. + Let $K = \carrier[X] \setminus H$. + $K$ is inhabited. + $K \in \closeds{X}$ by \cref{complement_of_open_is_closed}. + $x \notin K \ni y$ or $y \notin K \ni x$. + \begin{byCase} + \caseOf{$y \in K$.} Trivial. + \caseOf{$y \notin K$.} + Then there exist $U'',V'' \in \opens[X]$ such that $x \in U''$ and $K \subseteq V''$ and $U'' \inter V'' = \emptyset$ by \cref{is_regular}. + Let $K' = \carrier[X] \setminus U''$. + $x \in K'$. + $K' \in \closeds{X}$. + \end{byCase} + + + \end{subproof} + + Follows by assumption. + \end{subproof} + $y \in V$ by assumption. + Follows by assumption. + + +%\end{proof} |
