summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-18 00:01:42 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-18 00:01:42 +0200
commitc943ca6441e9118bc9caee1c11f697da89bc06b7 (patch)
tree1bfff18c501b0b8fa28d54848168d6b9ea06f12c /library/topology
parenta9785eb4cac6b8c237173f7e14367babd79e92e1 (diff)
working commit
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/urysohn2.tex260
1 files changed, 242 insertions, 18 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index 9990199..97bbc70 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -13,6 +13,7 @@
\import{set/fixpoint.tex}
\import{set/product.tex}
\import{topology/real-topological-space.tex}
+\import{set/equinumerosity.tex}
\section{Urysohns Lemma}
@@ -251,6 +252,7 @@
+
\begin{proposition}\label{naturals_leq_on_suc}
For all $n,m \in \naturals$ such that $m < \suc{n}$ we have $m \leq n$.
\end{proposition}
@@ -358,6 +360,218 @@
Omitted.
\end{proof}
+\begin{lemma}\label{naturals_suc_injective}
+ Suppose $n,m \in \naturals$.
+ $n = m$ iff $\suc{n} = \suc{m}$.
+\end{lemma}
+
+\begin{lemma}\label{naturals_rless_implies_not_eq}
+ Suppose $n,m \in \naturals$.
+ Suppose $n < m$.
+ Then $n \neq m$.
+\end{lemma}
+
+\begin{lemma}\label{cardinality_of_singleton}
+ For all $x$ such that $x \neq \emptyset$ we have $\{x\}$ has cardinality $1$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+ %Fix $x$.
+ %Suppose $x \neq \emptyset$.
+ %Let $X = \{x\}$.
+ %$\seq{\zero}{\zero}=1$.
+ %$\seq{\zero}{\zero}$ has cardinality $1$.
+ %$X \setminus \{x\} = \emptyset$.
+ %$1 = \{\emptyset\}$.
+ %Let $F = \{(x,\emptyset)\}$.
+ %$F$ is a relation.
+ %$\dom{F} = X$.
+ %$\emptyset \in \ran{F}$.
+ %for all $x \in 1$ we have $x = \emptyset$.
+ %$\ran{F} = 1$.
+ %$F$ is injective.
+ %$F \in \surj{X}{1}$.
+ %$F$ is a bijection from $X$ to $1$.
+\end{proof}
+
+\begin{lemma}\label{cardinality_n_plus_1}
+ For all $n \in \naturals$ we have $n+1$ has cardinality $n+1$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{cardinality_n_m_plus}
+ For all $n,m \in \naturals$ we have $n+m$ has cardinality $n+m$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{cardinality_plus_disjoint}
+ Suppose $X \inter Y = \emptyset$.
+ Suppose $X$ is finite.
+ Suppose $Y$ is finite.
+ Suppose $X$ has cardinality $n$.
+ Suppose $Y$ has cardinality $m$.
+ Then $X \union Y$ has cardinality $m+n$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+
+
+
+\begin{lemma}\label{injective_functions_is_bijection_if_bijection_there_is_other_bijection_1}
+ Suppose $f$ is a bijection from $X$ to $Y$.
+ Suppose $g$ is a function from $X$ to $Y$.
+ Suppose $g$ is injective.
+ Suppose $X$ is finite and $Y$ is finite.
+ For all $n \in \naturals$ such that $Y$ has cardinality $n$ we have $g$ is a bijection from $X$ to $Y$.
+\end{lemma}
+\begin{proof}[Proof by \in-induction on $n$]
+ Assume $n \in \naturals$.
+ Suppose $Y$ has cardinality $n$.
+ $X$ has cardinality $n$ by \cref{bijection_converse_is_bijection,bijection_circ,regularity,cardinality,foundation,empty_eq,notin_emptyset}.
+ \begin{byCase}
+ \caseOf{$n = \zero$.}
+ Follows by \cref{converse_converse_eq,injective_converse_is_function,converse_is_relation,dom_converse,id_is_function_to,id_ran,ran_circ_exact,circ,ran_converse,emptyset_is_function_on_emptyset,bijective_converse_are_funs,relext,function_member_elim,bijection_is_function,cardinality,bijections_dom,in_irrefl,codom_of_emptyset_can_be_anything,converse_emptyset,funs_elim,neq_witness,id}.
+ \caseOf{$n \neq \zero$.}
+ %Take $n' \in n$ such that $n = \suc{n'}$.
+ %$n' \in \naturals$.
+ %$n' + 1 = n$.
+ %Take $y$ such that $y \in Y$ by \cref{funs_type_apply,apply,bijections_to_funs,cardinality,foundation}.
+ %Let $Y' = Y \setminus \{y\}$.
+ %$Y' \subseteq Y$.
+ %$Y'$ is finite.
+ %There exist $m \in \naturals$ such that $Y'$ has cardinality $m$.
+ %Take $m \in \naturals$ such that $Y'$ has cardinality $m$.
+ %Then $Y'$ has cardinality $n'$.
+ %Let $x' = \apply{\converse{f}}{y'}$.
+ %$x' \in X$.
+ %Let $X' = X \setminus \{x'\}$.
+ %$X' \subseteq X$.
+ %$X'$ is finite.
+ %There exist $m' \in \naturals$ such that $X'$ has cardinality $m'$.
+ %Take $m' \in \naturals$ such that $X''$ has cardinality $m'$.
+ %Then $X'$ has cardinality $n'$.
+ %Let $f'(z)=f(z)$ for $z \in X'$.
+ %$\dom{f'} = X'$.
+ %$\ran{f'} = Y'$.
+ %$f'$ is a bijection from $X'$ to $Y'$.
+ %Let $g'(z) = g(z)$ for $z \in X'$.
+ %Then $g'$ is injective.
+ %Then $g'$ is a bijection from $X'$ to $Y'$ by \cref{rels,id_elem_rels,times_empty_right,powerset_emptyset,double_complement_union,unions_cons,union_eq_cons,union_as_unions,unions_pow,cons_absorb,setminus_self,bijections_dom,ran_converse,id_apply,apply,unions_emptyset,img_emptyset,zero_is_empty}.
+ %Define $G : X \to Y$ such that $G(z)=
+ %\begin{cases}
+ % g'(z) & \text{if} z \in X' \\
+ % y' & \text{if} z = x'
+ %\end{cases}$
+ %$G = g$.
+ %Follows by \cref{double_relative_complement,fun_to_surj,bijections,funs_surj_iff,bijections_to_funs,neq_witness,surj,funs_elim,setminus_self,cons_subseteq_iff,cardinality,ordinal_empty_or_emptyset_elem,naturals_inductive_set,natural_number_is_ordinal_for_all,foundation,inter_eq_left_implies_subseteq,inter_emptyset,cons_subseteq_intro,emptyset_subseteq}.
+ Omitted.
+ \end{byCase}
+ %$\converse{f}$ is a bijection from $Y$ to $X$.
+ %Let $h = g \circ \converse{f}$.
+ %It suffices to show that $\ran{g} = Y$ by \cref{fun_to_surj,dom_converse,bijections}.
+ %It suffices to show that for all $y \in Y$ we have there exist $x \in X$ such that $g(x)=y$ by \cref{funs_ran,subseteq_antisymmetric,fun_ran_iff,apply,funs_elim,ran_converse,subseteq}.
+%
+ %Fix $y \in Y$.
+ %Take $x \in X$ such that $\apply{\converse{f}}{y} = x$.
+
+\end{proof}
+
+\begin{lemma}\label{injective_functions_is_bijection_if_bijection_there_is_other_bijection}
+ Suppose $f$ is a bijection from $X$ to $Y$.
+ Suppose $g$ is a function from $X$ to $Y$.
+ Suppose $g$ is injective.
+ Suppose $Y$ is finite.
+ Then $g$ is a bijection from $X$ to $Y$.
+\end{lemma}
+\begin{proof}
+ There exist $n \in \naturals$ such that $Y$ has cardinality $n$ by \cref{cardinality,injective_functions_is_bijection_if_bijection_there_is_other_bijection_1,finite}.
+ Follows by \cref{injective_functions_is_bijection_if_bijection_there_is_other_bijection_1,cardinality,equinum_tran,equinum_sym,equinum,finite}.
+\end{proof}
+
+
+
+\begin{lemma}\label{naturals_bijection_implies_eq}
+ Suppose $n,m \in \naturals$.
+ Suppose $f$ is a bijection from $n$ to $m$.
+ Then $n = m$.
+\end{lemma}
+\begin{proof}
+ $n$ is finite.
+ $m$ is finite.
+ Suppose not.
+ Then $n < m$ or $m < n$.
+ \begin{byCase}
+ \caseOf{$n < m$.}
+ Then $n \in m$.
+ There exist $x \in m$ such that $x \notin n$.
+ $\identity{n}$ is a function from $n$ to $m$.
+ $\identity{n}$ is injective.
+ $\apply{\identity{n}}{n} = n$ by \cref{id_ran,ran_of_surj,bijections,injective_functions_is_bijection_if_bijection_there_is_other_bijection}.
+ Follows by \cref{inhabited,regularity,function_apply_default,apply,id_dom,in_irrefl,function_member_elim,bijections_dom,zero_is_empty,bijection_is_function,foundation,bijections,ran_of_surj,dom_converse,converse_emptyset,dom_emptyset}.
+ \caseOf{$m < n$.}
+ Then $m \in n$.
+ There exist $x \in n$ such that $x \notin m$.
+ $\converse{f}$ is a bijection from $m$ to $n$.
+ $\identity{m}$ is a function from $m$ to $n$.
+ $\identity{m}$ is injective.
+ $\apply{\identity{m}}{m} = m$ by \cref{id_ran,ran_of_surj,bijections,injective_functions_is_bijection_if_bijection_there_is_other_bijection}.
+ Follows by \cref{inhabited,regularity,function_apply_default,apply,id_dom,in_irrefl,function_member_elim,bijections_dom,zero_is_empty,bijection_is_function,foundation,bijections,ran_of_surj,dom_converse,converse_emptyset,dom_emptyset}.
+ \end{byCase}
+\end{proof}
+
+\begin{lemma}\label{naturals_eq_iff_bijection}
+ Suppose $n,m \in \naturals$.
+ $n = m$ iff there exist $f$ such that $f$ is a bijection from $n$ to $m$.
+\end{lemma}
+\begin{proof}
+ We show that if $n = m$ then there exist $f$ such that $f$ is a bijection from $n$ to $m$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+ We show that for all $k \in \naturals$ we have if there exist $f$ such that $f$ is a bijection from $k$ to $m$ then $k = m$.
+ \begin{subproof}%[Proof by \in-induction on $k$]
+ %Assume $k \in \naturals$.
+ %\begin{byCase}
+ % \caseOf{$k = \zero$.}
+ % Trivial.
+ % \caseOf{$k \neq \zero$.}
+ % \begin{byCase}
+ % \caseOf{$m = \zero$.}
+ % Trivial.
+ % \caseOf{$m \neq \zero$.}
+ % Take $k' \in \naturals$ such that $\suc{k'} = k$.
+ % Then $k' \in k$.
+ % Take $m' \in \naturals$ such that $m = \suc{m'}$.
+ % Then $m' \in m$.
+ %
+ % \end{byCase}
+ %\end{byCase}
+ \end{subproof}
+\end{proof}
+
+\begin{lemma}\label{seq_from_zero_suc_cardinality_eq_upper_border}
+ Suppose $n,m \in \naturals$.
+ Suppose $\seq{\zero}{n}$ has cardinality $\suc{m}$.
+ Then $n = m$.
+\end{lemma}
+\begin{proof}
+ We have $\seq{\zero}{n} = \suc{n}$.
+ Take $f$ such that $f$ is a bijection from $\seq{\zero}{n}$ to $\suc{m}$.
+ Therefore $n=m$ by \cref{suc_injective,naturals_inductive_set,cardinality,naturals_eq_iff_bijection}.
+\end{proof}
+
+\begin{lemma}\label{seq_from_zero_cardinality_eq_upper_border_set_eq}
+ Suppose $n,m \in \naturals$.
+ Suppose $\seq{\zero}{n}$ has cardinality $\suc{m}$.
+ Then $\seq{\zero}{n} = \seq{\zero}{m}$.
+\end{lemma}
+
\begin{proposition}\label{existence_normal_ordered_urysohn}
Let $X$ be a urysohn space.
Suppose $U$ is a urysohnchain of $X$.
@@ -384,23 +598,24 @@
Take $f$ such that there exist $k'$ such that $f$ is a bijection from $\seq{\zero}{k'}$ to $\dom{U}$ and $\dom{U}$ has cardinality $\suc{k'}$ and for all $n',m' \in \seq{\zero}{k'}$ such that $n' < m'$ we have $f(n') < f(m')$.
Take $k'$ such that $f$ is a bijection from $\seq{\zero}{k'}$ to $\dom{U}$ and $\dom{U}$ has cardinality $\suc{k'}$ and for all $n',m' \in \seq{\zero}{k'}$ such that $n' < m'$ we have $f(n') < f(m')$.
$\seq{\zero}{k'}$ has cardinality $\suc{k}$ by \cref{omega_is_an_ordinal,suc,ordinal_transitivity,bijection_converse_is_bijection,seq_zero_to_n_eq_to_suc_n,cardinality,bijections_dom,bijection_circ}.
- We show that $\seq{\zero}{k'} = \seq{\zero}{k}$.
- \begin{subproof}
- We show that $\seq{\zero}{k'} \subseteq \seq{\zero}{k}$.
- \begin{subproof}
- It suffices to show that for all $y \in \seq{\zero}{k'}$ we have $y \in \seq{\zero}{k}$.
- Fix $y \in \seq{\emptyset}{k'}$.
- Then $y \leq k'$.
- Therefore $y \in k'$ or $y = k'$ by \cref{omega_is_an_ordinal,suc_intro_self,ordinal_transitivity,cardinality,rless_eq_in_for_naturals,m_to_n_set}.
- %Then $\seq{\emptyset}{k'} \in \suc{k}$.
- Therefore $y \in \suc{k}$.
- Therefore $y \in \seq{\emptyset}{k}$.
- \end{subproof}
- We show that for all $y \in \seq{\zero}{k}$ we have $y \in \seq{\zero}{k'}$.
- \begin{subproof}
- Fix $y \in \seq{\emptyset}{k}$.
- \end{subproof}
- \end{subproof}
+ $\seq{\zero}{k'} = \seq{\zero}{k}$ by \cref{omega_is_an_ordinal,seq_from_zero_cardinality_eq_upper_border_set_eq,suc_subseteq_implies_in,suc_subseteq_elim,ordinal_suc_subseteq,cardinality}.
+ %We show that $\seq{\zero}{k'} = \seq{\zero}{k}$.
+ %\begin{subproof}
+ % We show that $\seq{\zero}{k'} \subseteq \seq{\zero}{k}$.
+ % \begin{subproof}
+ % It suffices to show that for all $y \in \seq{\zero}{k'}$ we have $y \in \seq{\zero}{k}$.
+ % Fix $y \in \seq{\emptyset}{k'}$.
+ % Then $y \leq k'$.
+ % Therefore $y \in k'$ or $y = k'$ by \cref{omega_is_an_ordinal,suc_intro_self,ordinal_transitivity,cardinality,rless_eq_in_for_naturals,m_to_n_set}.
+ %
+ % Therefore $y \in \suc{k}$.
+ % Therefore $y \in \seq{\emptyset}{k}$.
+ % \end{subproof}
+ % We show that for all $y \in \seq{\zero}{k}$ we have $y \in \seq{\zero}{k'}$.
+ % \begin{subproof}
+ % Fix $y \in \seq{\emptyset}{k}$.
+ % \end{subproof}
+ %\end{subproof}
\end{subproof}
Take $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$ and for all $n',m' \in \seq{\zero}{k}$ such that $n' < m'$ we have $F(n') < F(m')$.
Let $N = \seq{\zero}{k}$.
@@ -452,7 +667,9 @@
$f$ is staircase sequence of $U$ iff $f$ is a sequence and $U$ is a lifted urysohnchain of $X$ and $\dom{U} = \dom{f}$ and for all $n \in \dom{U}$ we have $\at{f}{n}$ is a staircase function adapted to $\at{U}{n}$ in $U$.
\end{definition}
-
+\begin{definition}
+
+\end{definition}
@@ -565,8 +782,15 @@
\end{subproof}
Take $U$ such that $U$ is a lifted urysohnchain of $X$ and $\at{U}{\zero} = U_0$.
+ We show that there exist $S$ such that $S$ is staircase sequence of $U$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+ Take $S$ such that $S$ is staircase sequence of $U$.
+ For all $x \in \carrier[X]$ we have there exist $r,R$ such that $r \in \reals$ and $R$ is a sequence of reals and $\dom{R} = \naturals$ and $R$ converge to $r$ and for all $n \in \naturals$ we have $\at{R}{n} = \apply{\at{S}{n}}{x}$.
+ We show that for all $x \in \carrier[X]$ there exists $r \in \intervalclosed{a}{b}$ such that for .