diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-09-05 01:17:16 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-09-05 01:17:16 +0200 |
| commit | e1d55f672b063f9347c0c9718ae5cdca9a370dba (patch) | |
| tree | 09470283bace815ee1f0f3c9cbd7b77ed299455a /library/topology | |
| parent | 22e9ebe72c349514a1ee0ed37772ca8168eaf658 (diff) | |
working commit
Diffstat (limited to 'library/topology')
| -rw-r--r-- | library/topology/urysohn2.tex | 75 |
1 files changed, 49 insertions, 26 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex index d08d507..93819dc 100644 --- a/library/topology/urysohn2.tex +++ b/library/topology/urysohn2.tex @@ -104,11 +104,31 @@ $\zero$ is an \in-minimal element of $\naturals$. \end{proposition} -\begin{proposition}\label{seq_zero_to_n_isomorph_to_suc_n} - For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$. +\begin{proposition}\label{naturals_leq} + For all $n \in \naturals$ we have $\zero \leq n$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + +\begin{proposition}\label{naturals_leq_on_suc} + For all $n,m \in \naturals$ such that $m < \suc{n}$ we have $m \leq n$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + +\begin{proposition}\label{x_in_seq_iff} + Suppose $n,m,x \in \naturals$. + $x \in \seq{n}{m}$ iff $n \leq x \leq m$. +\end{proposition} + +\begin{proposition}\label{seq_zero_to_n_eq_to_suc_n} + For all $n \in \naturals$ we have $\seq{\zero}{n} = \suc{n}$. \end{proposition} \begin{proof} [Proof by \in-induction on $n$] Assume $n \in \naturals$. + $n \in \naturals$. For all $m \in n$ we have $m \in \naturals$. \begin{byCase} \caseOf{$n = \zero$.} @@ -117,32 +137,35 @@ \caseOf{$n \neq \zero$.} Take $k$ such that $k \in \naturals$ and $\suc{k} = n$. Then $k \in n$. - Therefore $\seq{\zero}{k}$ has cardinality $\suc{k}$. - Now $\seq{\zero}{k}$ has cardinality $n$. - Take $f$ such that $f$ is a bijection from $n$ to $\seq{\zero}{k}$. - We have $\suc{n} = n \union \{n\}$. - We show that $\seq{\zero}{n} = \seq{\zero}{k} \union \{\suc{k}\}$. + Therefore $\seq{\zero}{k} = \suc{k}$. + We show that $\seq{\zero}{n} = \seq{\zero}{k} \union \{n\}$. \begin{subproof} - We show that $\seq{\zero}{n} \subseteq \seq{\zero}{k} \union \{\suc{k}\}$. + We show that $\seq{\zero}{n} \subseteq \seq{\zero}{k} \union \{n\}$. \begin{subproof} - Omitted. + It suffices to show that for all $x \in \seq{\zero}{n}$ we have $x \in \seq{\zero}{k} \union \{n\}$. + $n \in \naturals$. + $\zero \leq n$. + $n \leq n$. + We have $n \in \seq{\zero}{n}$. + Therefore $\seq{\zero}{n}$ is inhabited. + Take $x$ such that $x \in \seq{\zero}{n}$. + Therefore $\zero \leq x \leq n$. + $x = n$ or $x < n$. + Then either $x = n$ or $x \leq k$. + Therefore $x \in \seq{\zero}{k}$ or $x = n$. + Follows by \cref{reals_order,natural_number_is_ordinal,ordinal_empty_or_emptyset_elem,naturals_leq_on_suc,reals_axiom_zero_in_reals,naturals_subseteq_reals,subseteq,union_intro_left,naturals_inductive_set,m_to_n_set,x_in_seq_iff,union_intro_right,singleton_intro}. \end{subproof} - We show that $\seq{\zero}{k} \union \{\suc{k}\} \subseteq \seq{\zero}{n}$. + We show that $\seq{\zero}{k} \union \{n\} \subseteq \seq{\zero}{n}$. \begin{subproof} - Omitted. + $k \leq n$ by \cref{naturals_subseteq_reals,suc_eq_plus_one,plus_one_order,subseteq}. + $k \in n$. + $\seq{\zero}{k} = k$ by \cref{}. + We have $\seq{\zero}{k} \subseteq \seq{\zero}{n}$. + $n \in \seq{\zero}{n}$. \end{subproof} - %$\seq{\zero}{k} \subseteq \seq{\zero}{n}$. + Trivial. \end{subproof} - We have $\{n\} \notin n$. - We have $n \notmeets \{n\}$. - Let $X = \suc{n}$. - Let $Y = \seq{\zero}{n}$. - Define $F : X \to Y$ such that $F(x) =$ - \begin{cases} - &f(x) &\text{if} x \in n\\ - &\suc{k} &\text{if} x \in \{n\} - \end{cases} - + We have $\suc{n} = n \union \{n\}$. \end{byCase} %Assume $n$ is a natural number. @@ -168,10 +191,10 @@ %\end{subproof} \end{proof} -%\begin{proposition}\label{seq_zero_to_n_isomorph_to_suc_n} -% For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$. -%\end{proposition} -% +\begin{proposition}\label{seq_zero_to_n_isomorph_to_suc_n} + For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$. +\end{proposition} + \begin{proposition}\label{existence_normal_ordered_urysohn} Let $X$ be a urysohn space. Suppose $U$ is a urysohnchain of $X$. |
