diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-06-16 23:05:43 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-06-16 23:05:43 +0200 |
| commit | e82c1b73bba5987a176d6d33bd1dbcc5bedf0bbd (patch) | |
| tree | e95f8b17688be4f9e66f82109851ab88369d4b5f /library/topology | |
| parent | ab4ddd9d49349ddb781514b6b0e9060db5b66a22 (diff) | |
First implementation of basic relations of closed and open.
Not finished.
Diffstat (limited to 'library/topology')
| -rw-r--r-- | library/topology/topological-space.tex | 223 |
1 files changed, 147 insertions, 76 deletions
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex index dd236bb..2c6b98c 100644 --- a/library/topology/topological-space.tex +++ b/library/topology/topological-space.tex @@ -161,12 +161,21 @@ \begin{proposition}\label{carrier_is_closed} Let $X$ be a topological space. - Then $\emptyset$ is closed in $X$. + Then $\carrier[X]$ is closed in $X$. \end{proposition} \begin{proof} $\carrier[X]\setminus \carrier[X] = \emptyset$. + Follows by \cref{emptyset_open,is_closed_in}. \end{proof} +\begin{proposition}\label{opens_minus_closed_is_open} + Let $X$ be a topological space. + Suppose $A, B \subseteq \carrier[X]$. + Suppose $A$ is open in $X$. + Suppose $B$ is closed in $X$. + Then $A \setminus B$ is open in $X$. +\end{proposition} + \begin{definition}[Closed sets]\label{closeds} $\closeds{X} = \{ A\in\pow{\carrier[X]}\mid\text{$A$ is closed in $X$}\}$. \end{definition} @@ -216,9 +225,6 @@ Follows by \cref{inters_singleton,closure}. \end{proof} - -%Def: $\inters{A} = \{ x\in\unions{A}\mid \text{for all $a\in A$ we have $x\in a$} \}$. - \begin{proposition}\label{subseteq_inters_iff_to_right} Let $A,F$ be sets. Suppose $A \subseteq \inters{F}$. @@ -228,16 +234,17 @@ \begin{proposition}\label{subseteq_of_all_then_subset_of_union} Let $A,F$ be sets. + Suppose $F$ is inhabited. %TODO: Remove!! Suppose for all $X \in F$ we have $A \subseteq X$. Then $A \subseteq \unions{F}$. \end{proposition} \begin{proof} \begin{byCase} - \caseOf{$F$ is empty.} - For all $X$ we have $X \notin F$. - If $X \in F$ and $A \in X$ then $A \in F$. - %There exist $X \in F$. - Contradiction by assumption. + %\caseOf{$F$ is empty.} + %For all $X$ we have $X \notin F$. + %If $X \in F$ and $A \in X$ then $A \in F$. + %Contradiction by assumption. + %Omitted. \caseOf{$F$ is inhabited.} There exist $X \in F$ such that $X \subseteq \unions{F}$. $A \subseteq X \subseteq \unions{F}$. @@ -246,6 +253,7 @@ \begin{proposition}\label{subseteq_inters_iff_to_left} Let $A,F$ be sets. + Suppose $F$ is inhabited. % TODO:Remove!! Suppose for all $X \in F$ we have $A \subseteq X$. Then $A \subseteq \inters{F}$. \end{proposition} @@ -253,71 +261,157 @@ \begin{byCase} \caseOf{$A = \emptyset$.}Trivial. \caseOf{$A \neq \emptyset$.} + $F$ is inhabited. It suffices to show that for all $a \in A$ we have $a \in \inters{F}$. Fix $a \in A$. For all $X \in F$ we have $a \in X$. $A \subseteq \unions{F}$. $a \in \unions{F}$. \end{byCase} - - %It suffices to show that for all $a \in A$ we have $x \in \inters{F}$. % This have been proven!!! But it shouldn't. - -% we show that there exist $Y \in F$ such that $a \in Y$. -% \begin{subproof} - -% \begin{byCase} -% \caseOf{$a = \emptyset$.} -% $\emptyset \subseteq \inters{F}$. -% $\emptyset \in \emptyset$. -% \caseOf{$a \neq \emptyset$.} Omitted. -% \end{byCase} - - %cases by a = \emptyset - %case a \neq \emptyset -% \end{subproof} \end{proof} -%------------------------ Only example ------------------------------------- \begin{proposition}\label{subseteq_inters_iff_new} + Suppose $F$ is inhabited. $A \subseteq \inters{F}$ iff for all $X \in F$ we have $A \subseteq X$. \end{proposition} -%\begin{proof} -% We show that if $A \subseteq \inters{F}$ then for all $X \in F$ we have $A \subseteq X$. -% \begin{subproof} - %It suffices to show that for all $a,X$ such that $a \in A$ and $X \in F$ we have $a \in X$. - %Fix $a \in A$. - %Fix $X \in F$. %TODO: Missmatched Assume! - -% It suffices to show that for all $a,X$ such that $a \in A$ and $X \in F$ we have $a \in X$. -% Follows by \cref{inters}. -% \end{subproof} -% We show that for all $X \in F$ such that $A \subseteq X$ we have $A \subseteq \inters{F}$. -% \begin{subproof} -% Omitted. -% \end{subproof} -%\end{proof} \begin{proposition}\label{set_is_subseteq_to_closure_of_the_set} + Let $X$ be a topological space. + Suppose $A \subseteq \carrier[X]$. $A \subseteq \closure{A}{X}$. \end{proposition} \begin{proof} - %$\closures{A}{X}$ is inhabited. %TODO: Inhabited why does "subseteq_inters_iff" has inhabited as assumtion?? - For all $A' \in \closures{A}{X}$ we have $A \subseteq A'$. - Therefore $A \subseteq \inters{\closures{A}{X}}$. + \begin{byCase} + \caseOf{$A = \emptyset$.} + Trivial. + \caseOf{$A \neq \emptyset$.} + We show that $\carrier[X] \in \closures{A}{X}$. + \begin{subproof} + $\carrier[X]$ is closed in $X$. + $\carrier[X] \in \pow{\carrier[X]}$. + \end{subproof} + $\closures{A}{X}$ is inhabited. + For all $A' \in \closures{A}{X}$ we have $A \subseteq A'$. + Therefore $A \subseteq \inters{\closures{A}{X}}$. + \end{byCase} \end{proof} \begin{proposition}\label{complement_of_closure_of_complement_of_x_subseteq_x} + Let $X$ be a topological space. + Suppose $A \subseteq \carrier[X]$. $(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \subseteq A$. \end{proposition} \begin{proof} It suffices to show that for all $x \in (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$ we have $x \in A$. If $x \in \carrier[X]\setminus A$ then $x \in \closure{(\carrier[X]\setminus A)}{X}$. +\end{proof} +\begin{proposition}\label{complement_of_closed_is_open} + Let $X$ be a topological space. + Suppose $A \subseteq \carrier[X]$. + Suppose $A$ is closed in $X$. + Then $\carrier[X] \setminus A$ is open in $X$. +\end{proposition} + +\begin{proposition}\label{complement_of_open_is_closed} + Let $X$ be a topological space. + Suppose $A \subseteq \carrier[X]$. + Suppose $A$ is open in $X$. + Then $\carrier[X] \setminus A$ is closed in $X$. +\end{proposition} + +\begin{proposition}\label{intersection_of_closed_is_closed} + Let $X$ be a topological space. + Suppose $A, B \subseteq \carrier[X]$. + Suppose $A$ are closed in $X$. + Suppose $B$ are closed in $X$. + Then $A \inter B$ is closed in $X$. +\end{proposition} +\begin{proof} + $\carrier[X] \setminus A, \carrier[X] \setminus B \in \opens[X]$. + $(\carrier[X] \setminus A) \union (\carrier[X] \setminus B) \in \opens[X]$. + $A \inter B = \carrier[X] \setminus ((\carrier[X] \setminus A) \union (\carrier[X] \setminus B))$. \end{proof} -\begin{proposition}%[Complement of interior equals closure of complement] -\label{complement_interior_eq_closure_complement} +\begin{proposition}\label{union_of_closed_is_closed} Let $X$ be a topological space. + Suppose $A, B \subseteq \carrier[X]$. + Suppose $A$ are closed in $X$. + Suppose $B$ are closed in $X$. + Then $A \union B$ is closed in $X$. +\end{proposition} +\begin{proof} + $\carrier[X] \setminus A, \carrier[X] \setminus B \in \opens[X]$. + $(\carrier[X] \setminus A) \inter (\carrier[X] \setminus B) \in \opens[X]$. + $A \union B = \carrier[X] \setminus ((\carrier[X] \setminus A) \inter (\carrier[X] \setminus B))$. +\end{proof} + +\begin{proposition}\label{closed_minus_open_is_closed} + Let $X$ be a topological space. + Suppose $A, B \subseteq \carrier[X]$. + Suppose $A$ is open in $X$. + Suppose $B$ is closed in $X$. + Then $B \setminus A$ is closed in $X$. +\end{proposition} + + + +\begin{proposition}\label{intersection_of_closed_is_closed_infinite} + Let $X$ be a topological space. + Suppose $F \subseteq \pow{\carrier[X]}$. + Suppose for all $A \in F$ we have $A$ is closed in $X$. + Suppose $F$ is inhabited. + Then $\inters{F}$ is closed in $X$. +\end{proposition} +\begin{proof} + Let $F' = \{Y \in \pow{\carrier[X]} \mid \text{there exists $C \in F$ such that $Y = \carrier[X] \setminus C$ }\} $. + For all $Y \in F'$ we have $Y$ is open in $X$. + $\unions{F'}$ is open in $X$. + $\unions{F'}, \inters{F} \subseteq \carrier[X]$. + We show that $\inters{F} = \carrier[X] \setminus (\unions{F'})$. + \begin{subproof} + We show that for all $a \in \inters{F}$ we have $a \in \carrier[X] \setminus (\unions{F'})$. + \begin{subproof} + Fix $a \in \inters{F}$. + $a \in \carrier[X]$. + For all $A \in F$ we have $a \in A$. + For all $A \in F$ we have $a \notin (\carrier[X] \setminus A)$. + Then $a \notin \unions{F'}$. + Therefore $a \in \carrier[X] \setminus (\unions{F'})$. + \end{subproof} + + We show that for all $a \in \carrier[X] \setminus (\unions{F'})$ we have $a \in \inters{F}$. + \begin{subproof} + Fix $a \in \carrier[X] \setminus (\unions{F'})$. + \begin{byCase} + \caseOf{$a = \emptyset$.} + Omitted. + \caseOf{$a \neq \emptyset$.} + $a \in \carrier[X]$. + $a \notin \unions{F'}$. + For all $A \in F'$ we have $a \notin A$. + For all $A \in F'$ we have $a \in (\carrier[X] \setminus A)$. + For all $A \in F'$ there exists $Y \in F$ such that $Y = (\carrier[X] \setminus A)$. + For all $Y \in F $ there exists $A \in F'$ such that $a \in Y = (\carrier[X] \setminus A)$. + For all $Y \in F$ we have $a \in Y$. + $\inters{F}$ is inhabited. + Therefore $a \in \inters{F}$. + \end{byCase} + \end{subproof} + Follows by set extensionality. + \end{subproof} + Follows by \cref{complement_of_open_is_closed}. +\end{proof} + +\begin{proposition}\label{closure_is_closed} + Let $X$ be a topological space. + Suppose $A \subseteq \carrier[X]$. + Then $\closure{A}{X}$ is closed in $X$. +\end{proposition} + +\begin{proposition}\label{complement_interior_eq_closure_complement} + Let $X$ be a topological space. + Suppose $A \subseteq \carrier[X]$. $\carrier[X]\setminus\interior{A}{X} = \closure{(\carrier[X]\setminus A)}{X}$. \end{proposition} \begin{proof} @@ -327,47 +421,24 @@ Suppose not. $x \notin \closure{(\carrier[X]\setminus A)}{X}$. $x \in \carrier[X]$. - For all $x \in X$ such that $A \union B = X$ and $A \inter B = \emptyset$ we have $x \in A \implies x \notin B$. - For all $x \in X$ such that $A \union B = X$ and $A \inter B = \emptyset$ we have $x \notin A \implies x \in B$. $(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \inter \closure{(\carrier[X]\setminus A)}{X} = \emptyset$. - %$(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \subseteq A$. %TODO: $x \in A$. $x \in A \inter (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$. - $\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X} \in \opens[X]$. %TODO: + $\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X} \in \opens[X]$. Contradiction. \end{subproof} - $\carrier[X]\setminus\interior{A}{X} \subseteq \closure{(\carrier[X]\setminus A)}{X}$. - - $\closure{(\carrier[X]\setminus A)}{X} \subseteq \carrier[X]\setminus\interior{A}{X}$. %TODO: - - %We show that for all $x \in \carrier[X]\setminus\interior{A}{X}$ we have $x \in \closure{(\carrier[X]\setminus A)}{X}$. - %\begin{subproof} - % Fix $x \in \carrier[X]\setminus\interior{A}{X}$. - % \begin{byCase} - % \caseOf{$x \in \carrier[X] \setminus A$.} - % Trivial. - % \caseOf{$x \in \carrier[X] \setminus A \inter \interior{A}{X}$.} - % $\carrier[X] \setminus \closure{A}{X} \in \opens[X]$. - % $\interior{A}{X} \in \opens[X]$. - % Therefore $\carrier[X] \setminus \closure{A}{X} \inter \interior{A}{X} \in \opens[X]$. - % %$\carrier[X] \setminus \closure{A}{X}$ is open. TODO: is open throws an error! - % %$\interior{A}{X}$ is open. - % %Therefore $\carrier[X] \setminus \closure{A}{X} \inter \interior{A}{X}$ is open. - % - % \end{byCase} - %\end{subproof} - %Suffices reduction by \cref ::::: reduction => goal. - - - %Omitted. % Use general De Morgan's Law in Pow|X| + $\closure{(\carrier[X]\setminus A)}{X} \subseteq \carrier[X]\setminus\interior{A}{X}$. \end{proof} + \begin{definition}[Frontier]\label{frontier} $\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. \end{definition} - +\begin{proposition}\label{safe} %TODO: Remove!!! + $x \neq x$. +\end{proposition} \begin{proposition}%[Frontier as intersection of closures] \label{frontier_as_inter} @@ -375,7 +446,7 @@ \end{proposition} \begin{proof} % TODO - Omitted. + %Omitted. %$\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. % by frontier (definition) %$\closure{A}{X}\setminus\interior{A}{X} = \closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X})$. % by setminus_eq_inter_complement %$\closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X}) = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. % by complement_interior_eq_closure_complement |
