diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-10 19:18:39 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-10 19:18:39 +0200 |
| commit | 34aad4be8fb8433f0205517732da0d449d077572 (patch) | |
| tree | b926d3b4e42f92a89f18210490b8313f8d62e97a /library | |
| parent | 894dd1c6e66099f65ebb8860e0cdf258fa143e89 (diff) | |
more more urysohn
Diffstat (limited to 'library')
| -rw-r--r-- | library/cardinal.tex | 2 | ||||
| -rw-r--r-- | library/topology/urysohn.tex | 341 |
2 files changed, 190 insertions, 153 deletions
diff --git a/library/cardinal.tex b/library/cardinal.tex index 8691b30..044e5d1 100644 --- a/library/cardinal.tex +++ b/library/cardinal.tex @@ -18,3 +18,5 @@ $X$ has cardinality $k$ iff $k$ is a natural number and there exists a bijection from $k$ to $X$. \end{definition} + + diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index 3152de7..028e10f 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -198,60 +198,82 @@ The first tept will be a formalisation of chain constructions. Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. - Suppose $U = \{A,(X \setminus B)\}$. - Suppose $\indexset[U]= \{\zero, 1\}$. - Suppose $\index[U](\zero) = A$. - Suppose $\index[U](1) = (X \setminus B)$. - Then $U$ is a urysohnchain in $X$. + Then there exist $U$ + such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$ + and $\indexset[U]= \{\zero, 1\}$ + and $\index[U](\zero) = A$ + and $\index[U](1) = (\carrier[X] \setminus B)$. + %$U$ is a urysohnchain in $X$. \end{proposition} \begin{proof} - We show that $U$ is a sequence. - \begin{subproof} - Omitted. - \end{subproof} - We show that $A \subseteq (X \setminus B)$. - \begin{subproof} - Omitted. - \end{subproof} + Omitted. - We show that $U$ is a chain of subsets. - \begin{subproof} - For all $n \in \indexset[U]$ we have $n = \zero \lor n = 1$. - It suffices to show that for all $n \in \indexset[U]$ we have - for all $m \in \indexset[U]$ such that - $n < m$ we have $\index[U](n) \subseteq \index[U](m)$. - Fix $n \in \indexset[U]$. - Fix $m \in \indexset[U]$. - \begin{byCase} - \caseOf{$n = 1$.} Trivial. - \caseOf{$n = \zero$.} - \begin{byCase} - \caseOf{$m = \zero$.} Trivial. - \caseOf{$m = 1$.} Omitted. - \end{byCase} - \end{byCase} - \end{subproof} + % We show that $U$ is a sequence. + % \begin{subproof} + % Omitted. + % \end{subproof} +% + % We show that $A \subseteq (\carrier[X] \setminus B)$. + % \begin{subproof} + % Omitted. + % \end{subproof} +% + % We show that $U$ is a chain of subsets. + % \begin{subproof} + % For all $n \in \indexset[U]$ we have $n = \zero \lor n = 1$. + % It suffices to show that for all $n \in \indexset[U]$ we have + % for all $m \in \indexset[U]$ such that + % $n < m$ we have $\index[U](n) \subseteq \index[U](m)$. + % Fix $n \in \indexset[U]$. + % Fix $m \in \indexset[U]$. + % \begin{byCase} + % \caseOf{$n = 1$.} Trivial. + % \caseOf{$n = \zero$.} + % \begin{byCase} + % \caseOf{$m = \zero$.} Trivial. + % \caseOf{$m = 1$.} Omitted. + % \end{byCase} + % \end{byCase} + % \end{subproof} +% + % $A \subseteq X$. + % $(X \setminus B) \subseteq X$. + % We show that for all $x \in U$ we have $x \subseteq X$. + % \begin{subproof} + % Omitted. + % \end{subproof} +% + % We show that $\closure{A}{X} \subseteq \interior{(X \setminus B)}{X}$. + % \begin{subproof} + % Omitted. + % \end{subproof} + % We show that for all $n,m \in \indexset[U]$ such that $n < m$ we have + % $\closure{\index[U](n)}{X} \subseteq \interior{\index[U](m)}{X}$. + % \begin{subproof} + % Omitted. + % \end{subproof} - $A \subseteq X$. - $(X \setminus B) \subseteq X$. - We show that for all $x \in U$ we have $x \subseteq X$. - \begin{subproof} - Omitted. - \end{subproof} + +\end{proof} - We show that $\closure{A}{X} \subseteq \interior{(X \setminus B)}{X}$. - \begin{subproof} - Omitted. - \end{subproof} - We show that for all $n,m \in \indexset[U]$ such that $n < m$ we have - $\closure{\index[U](n)}{X} \subseteq \interior{\index[U](m)}{X}$. - \begin{subproof} - Omitted. - \end{subproof} +\begin{proposition}\label{urysohnchain_induction_begin_step_two} + Let $X$ be a urysohn space. + Suppose $A,B \in \closeds{X}$. + Suppose $A \inter B$ is empty. + Suppose there exist $U$ + such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$ + and $\indexset[U]= \{\zero, 1\}$ + and $\index[U](\zero) = A$ + and $\index[U](1) = (\carrier[X] \setminus B)$. + Then $U$ is a urysohnchain in $X$. +\end{proposition} +\begin{proof} + Omitted. \end{proof} + \begin{proposition}\label{t_four_propositon} Let $X$ be a urysohn space. Then for all $A,B \subseteq X$ such that $\closure{A}{X} \subseteq \interior{B}{X}$ @@ -295,134 +317,147 @@ The first tept will be a formalisation of chain constructions. \end{proof} +\begin{proposition}\label{existence_of_staircase_function} + Let $X$ be a urysohn space. + Suppose $U$ is a urysohnchain in $X$ and $U$ has cardinality $k$. + Suppose $k \neq \zero$. + Then there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ + and for all $n \in \indexset[U]$ we have for all $x \in \index[U](n)$ + we have $f(x) = \rfrac{n}{k}$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} +\begin{abbreviation}\label{refinment_abbreviation} + $x \refine y$ iff $x$ is a refinmant of $y$. +\end{abbreviation} - - -% The next thing we need to define is the uniform staircase function. -% This function has it's domain in $X$ and maps to the closed interval $[0,1]$. -% These functions should behave als follows, -% \begin{align} -% &f(A_{0}) = 1 &\text{consant} \\ -% &f(A_{k} \setminus A_{k+1}) = 1-\frac{k}{r} &\text{constant.} -% \end{align} - -% We then prove that for any given $r$ we find a repolished chain, -% which contains the $A_{i}$ and this replished chain is also legal. -% -% The proof will be finished by taking the limit on $f_{n}$ with $f_{n}$ -% be a staircase function with $n$ many refinemants. -% This limit will be continuous and we would be done. - - -% TODO: Since we want to prove that $f$ is continus, we have to formalize that -% \reals with the usual topology is a topological space. -% ------------------------------------------------------------- - \begin{theorem}\label{urysohn} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. - There exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$ + There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous. \end{theorem} \begin{proof} - We show that for all $n \in \naturals$ we have - if there exist $C$ such that $C$ is a urysohnchain in $X$ of cardinality $n$ - then there exist $C'$ such that $C'$ is a urysohnchain in $X$ of cardinality $n+1$ - and $C'$ is a refinmant of $C$. - \begin{subproof} - Omitted. - \end{subproof} - - There exist $\eta$ such that $\eta$ is a urysohnchain in $X$ and $\eta =\{A, (x \setminus B)\}$. - - - Take $P$ such that $P$ is a infinite sequence and $\indexset[P] = \naturals$ and for all $i \in \indexset[P]$ we have $\index[P](i) = \pow{X}$. + There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$ + and $\indexset[\eta] = \{\zero, 1\}$ + and $\index[\eta](\zero) = A$ + and $\index[\eta](1) = (\carrier[X] \setminus B)$ by \cref{urysohnchain_induction_begin}. - We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence - and for all $i \in \indexset[\zeta]$ we have - $\index[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$ - and $A \subseteq \index[\zeta](i)$ - and $\index[\zeta](i) \subseteq (X \setminus B)$ - and for all $j \in \indexset[\zeta]$ such that - $j < i$ we have for all $x \in \index[\zeta](j)$ we have $x \in \index[\zeta](i)$. + We show that there exist $\zeta$ such that $\zeta$ is a sequence + and $\indexset[\zeta] = \naturals$ + and $\eta \in \carrier[\zeta]$ and $\index[\zeta](\eta) = \zero$ + and for all $n \in \indexset[\zeta]$ we have $n+1 \in \indexset[\zeta]$ + and $\index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)$. \begin{subproof} - Omitted. - \end{subproof} - - - - - - + %Let $P = \{ n \in \naturals \mid \exists \zeta. ((n = \zero \land \index[\zeta](n) = \eta \land \index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)) \lor (n \neq \zero \land \index[\zeta](n)$ is a urysohnchain in $X$ \land $\index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)))\}$. + %Let $C = \{ x \mid \text{$x$ is a uysohncahin in $X$}\}$. + Let $\alpha = \{x \in C \mid \exists y \in \alpha. x \refine y \lor x = \eta\}$. + Let $\beta = \{ (n,x) \mid n \in \naturals \mid \exists m \in \naturals. \exists y \in \alpha. (x \in \alpha) \land ((x \refine y \land m = n+1 )\lor ((n,x) = (\zero,\eta)))\}$. - - We show that there exist $g \in \funs{X}{\intervalclosed{\zero}{1}}$ such that $g(A)=1$ and $g(X\setminus A) = \zero$. - \begin{subproof} - Omitted. + % TODO: Proof that \beta is a function which would be used for the indexing. + \end{subproof} - $g$ is a staircase function and $\chain[g] = C$. - $g$ is a legal staircase function. - We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$ - and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous. - \begin{subproof} - Omitted. - \end{subproof} - %We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$. - %\begin{subproof} - % Omitted. - %\end{subproof} - - %Proof Sheme Idea: - % -We proof for n=1 that C_{n} is a chain and legal - % -Then by induction with P(n+1) is refinmant of P(n) - % -Therefore we have a increing refinmant of these Chains such that our limit could even apply - % --------------------------------------------------------- - - %We show that there exist $f \in \funs{\naturals}{\funs{X}{\intervalclosed{0}{1}}}$ such that $f(n)$ is a staircase function. %TODO: Define Staircase function - %\begin{subproof} - % Omitted. - %\end{subproof} - - - % Formalization idea of enumarted sequences: - % - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals} - % - This should give all finite and infinte enumarable sequences - % - Introduce a notion for the indexing of these enumarable sequences. - % - Then we can define the limit of a enumarted sequence of functions. - % --------------------------------------------------------- - % - % Here we need a limit definition for sequences of functions - %We show that there exist $F \in \funs{X}{\intervalclosed{0}{1}}$ such that $F = \limit{set of the staircase functions}$ - %\begin{subproof} - % Omitted. - %\end{subproof} - % - %We show that $F(A) = 1$. - %\begin{subproof} - % Omitted. - %\end{subproof} - % - %We show that $F(B) = 0$. - %\begin{subproof} - % Omitted. - %\end{subproof} - % - %We show that $F$ is continuous. - %\begin{subproof} - % Omitted. - %\end{subproof} + %Suppose $\eta$ is a urysohnchain in $X$. + %Suppose $\carrier[\eta] =\{A, (X \setminus B)\}$ + %and $\indexset[\eta] = \{\zero, 1\}$ + %and $\index[\eta](\zero) = A$ + %and $\index[\eta](1) = (X \setminus B)$. + + + %Then $\eta$ is a urysohnchain in $X$. + + % Take $P$ such that $P$ is a infinite sequence and $\indexset[P] = \naturals$ and for all $i \in \indexset[P]$ we have $\index[P](i) = \pow{X}$. + % + % We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence + % and for all $i \in \indexset[\zeta]$ we have + % $\index[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$ + % and $A \subseteq \index[\zeta](i)$ + % and $\index[\zeta](i) \subseteq (X \setminus B)$ + % and for all $j \in \indexset[\zeta]$ such that + % $j < i$ we have for all $x \in \index[\zeta](j)$ we have $x \in \index[\zeta](i)$. + % \begin{subproof} + % Omitted. + % \end{subproof} + % + % + % + % + % + % + % + % + % We show that there exist $g \in \funs{X}{\intervalclosed{\zero}{1}}$ such that $g(A)=1$ and $g(X\setminus A) = \zero$. + % \begin{subproof} + % Omitted. + % \end{subproof} + % $g$ is a staircase function and $\chain[g] = C$. + % $g$ is a legal staircase function. + % + % + % We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$ + % and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous. + % \begin{subproof} + % Omitted. + % \end{subproof} + + + % We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$. + % \begin{subproof} + % Omitted. + % \end{subproof} + + % Proof Sheme Idea: + % -We proof for n=1 that C_{n} is a chain and legal + % -Then by induction with P(n+1) is refinmant of P(n) + % -Therefore we have a increing refinmant of these Chains such that our limit could even apply + % --------------------------------------------------------- + + % We show that there exist $f \in \funs{\naturals}{\funs{X}{\intervalclosed{0}{1}}}$ such that $f(n)$ is a staircase function. %TODO: Define Staircase function + % \begin{subproof} + % Omitted. + % \end{subproof} + + + % Formalization idea of enumarted sequences: + % - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals} + % - This should give all finite and infinte enumarable sequences + % - Introduce a notion for the indexing of these enumarable sequences. + % - Then we can define the limit of a enumarted sequence of functions. + % --------------------------------------------------------- + % + % Here we need a limit definition for sequences of functions + % We show that there exist $F \in \funs{X}{\intervalclosed{0}{1}}$ such that $F = \limit{set of the staircase functions}$ + % \begin{subproof} + % Omitted. + % \end{subproof} + % + % We show that $F(A) = 1$. + % \begin{subproof} + % Omitted. + % \end{subproof} + % + % We show that $F(B) = 0$. + % \begin{subproof} + % Omitted. + % \end{subproof} + % + % We show that $F$ is continuous. + % \begin{subproof} + % Omitted. + % \end{subproof} \end{proof} -\begin{theorem}\label{safe} - Contradiction. -\end{theorem} +%\begin{theorem}\label{safe} +% Contradiction. +%\end{theorem} |
