summaryrefslogtreecommitdiff
path: root/library/topology/urysohn.tex
blob: 028e10f3a7e9bf2b5a8d75bd7d433a6938be82aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
\import{topology/topological-space.tex}
\import{topology/separation.tex}
\import{topology/continuous.tex}
\import{numbers.tex}
\import{function.tex}
\import{set.tex}
\import{cardinal.tex}

\section{Urysohns Lemma}
%           In this section we want to proof Urysohns lemma. 
%           We try to follow the proof of Klaus Jänich in his book. TODO: Book reference
%           The Idea is to construct staircase functions as a chain.
%           The limit of our chain turns out to be our desired continuous function from a topological space $X$ to $[0,1]$.
%           With the property that \[f\mid_{A}=1 \land f\mid_{B}=0\] for \[A,B\] closed sets.

%Chains of  sets.

The first tept will be a formalisation of chain constructions.

\subsection{Chains of sets}
%           Assume $A,B$ are subsets of a topological space $X$.

%           As Jänich propose we want a special property on chains of subsets.
%           We need a rising chain of subsets $\mathfrak{A} = (A_{0}, ... ,A_{r})$ of $A$, i.e. 
%           \begin{align}
%               A = A_{0} \subset A_{1} \subset ... \subset A_{r} \subset X\setminus B 
%           \end{align} 
%           such that for all elements in this chain following holds, 
%           $\overline{A_{i-1}}  \subset \interior{A_{i}}$. 
%           In this case we call the chain legal.

\begin{definition}\label{one_to_n_set}
    $\seq{m}{n} = \{x \in \naturals \mid  m \leq x \leq n\}$.   
\end{definition}




\begin{struct}\label{sequence}
    A sequence $X$ is a onesorted structure equipped with
    \begin{enumerate}
        \item $\index$
        \item $\indexset$
    \end{enumerate}
    such that
    \begin{enumerate}
        \item\label{indexset_is_subset_naturals} $\indexset[X] \subseteq \naturals$.
        \item\label{index_is_bijection} $\index[X]$ is a bijection from $\indexset[X]$ to $\carrier[X]$.
    \end{enumerate}
\end{struct}

\begin{definition}\label{cahin_of_subsets}
    $C$ is a chain of subsets iff
    $C$ is a sequence and for all $n,m \in \indexset[C]$ such that $n < m$ we have $\index[C](n) \subseteq \index[C](m)$.
\end{definition}

\begin{definition}\label{chain_of_n_subsets}
    $C$ is a chain of $n$ subsets iff
    $C$ is a chain of subsets and $n \in \indexset[C]$ 
    and for all $m \in \naturals$ such that $m \leq n$ we have $m \in \indexset[C]$.
\end{definition}



% TODO: The Notion above should be generalised to sequences since we need them as well for our limit
% and also for the subproof of continuity of the limit.


%     \begin{definition}\label{legal_chain}
%         $C$ is a legal chain of subsets of $X$ iff 
%         $C \subseteq \pow{X}$. %and 
%         %there exist $f \in \funs{C}{\naturals}$ such that
%         %for all $x,y \in C$ we have if $f(x) < f(y)$ then $x \subset y \land \closure{x} \subset \interior{y}$.
%     \end{definition}

% TODO: We need a notion for declarinf new properties to existing thing. 
%
% The following gives a example and a wish want would be nice to have:
% "A (structure) is called (adjectiv of property), if"
%
% This should then be use als follows:
% Let $X$ be a (adjectiv_1) ... (adjectiv_n) (structure_word). 
% Which should be translated to fol like this:
% ?[X]: is_structure(X) & is_adjectiv_1(X) & ... & is_adjectiv_n(X)
% ---------------------------------------------------------------



\subsection{staircase function}

\begin{definition}\label{intervalclosed}
    $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
\end{definition}


\begin{struct}\label{staircase_function}
    A staircase function $f$ is a onesorted structure equipped with
    \begin{enumerate}
        \item $\chain$
    \end{enumerate}
    such that
    \begin{enumerate}
        \item \label{staircase_is_function} $f$ is a function to $\intervalclosed{\zero}{1}$.
        \item \label{staircase_domain} $\dom{f}$ is a topological space.
        \item \label{staricase_def_chain} $C$ is a chain of subsets.
        \item \label{staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$.
        \item \label{staircase_behavoir_index_zero} $f(\index[C](1))= 1$. 
        \item \label{staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$.
    \end{enumerate}
\end{struct}

\begin{definition}\label{legal_staircase}
    $f$ is a legal staircase function iff
    $f$ is a staircase function and 
    for all $n,m \in \indexset[\chain[f]]$ such that $n \leq m$ we have $f(\index[\chain[f]](n)) \leq f(\index[\chain[f]](m))$.
\end{definition}

\begin{abbreviation}\label{urysohnspace}
    $X$ is a urysohn space iff
    $X$ is a topological space and
    for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$
    we have there exist $A',B' \in \opens[X]$
    such that  $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.    
\end{abbreviation}

\begin{definition}\label{urysohnchain}
    $C$ is a urysohnchain in $X$ of cardinality $k$ iff %<---- TODO: cardinality unused!
    $C$ is a chain of subsets and
    for all $A \in C$ we have $A \subseteq X$ and
    for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$.
\end{definition}

\begin{definition}\label{urysohnchain_without_cardinality}
    $C$ is a urysohnchain in $X$ iff
    $C$ is a chain of subsets and
    for all $A \in C$ we have $A \subseteq X$ and
    for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$.
\end{definition}

\begin{abbreviation}\label{infinte_sequence}
    $S$ is a infinite sequence iff $S$ is a sequence and $\indexset[S]$ is infinite.
\end{abbreviation}

\begin{definition}\label{infinite_product}
    $X$ is the infinite product of $Y$ iff
    $X$ is a infinite sequence and for all $i \in \indexset[X]$ we have $\index[X](i) = Y$.
\end{definition}

\begin{definition}\label{refinmant}
    $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and 
    for all $y \in C$ such that $y \subset x$ we have there exist $c \in C'$ such that $y \subset c \subset x$
    and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$.
\end{definition}

\begin{abbreviation}\label{two}
    $\two = \suc{1}$.
\end{abbreviation}

\begin{lemma}\label{two_in_reals}
    $\two \in \reals$.
\end{lemma}

\begin{lemma}\label{two_in_naturals}
    $\two \in \naturals$.
\end{lemma}

\begin{inductive}\label{power_of_two}
    Define $\powerOfTwoSet \subseteq (\naturals \times \naturals)$.
    \begin{enumerate}
        \item  $(\zero, 1) \in \powerOfTwoSet$.
        \item  If $(m,k) \in \powerOfTwoSet$, then $(m+1, k \rmul \two) \in \powerOfTwoSet$.
    \end{enumerate}
\end{inductive}

\begin{abbreviation}\label{pot}
    $\pot = \powerOfTwoSet$.
\end{abbreviation}

\begin{lemma}\label{dom_pot}
    $\dom{\pot} = \naturals$.
\end{lemma}
\begin{proof}
    Omitted.
\end{proof}

\begin{lemma}\label{ran_pot}
    $\ran{\pot} \subseteq \naturals$.
\end{lemma}








\begin{proposition}\label{urysohnchain_induction_begin}
    Let $X$ be a urysohn space.
    Suppose $A,B \in \closeds{X}$.
    Suppose $A \inter B$ is empty.
    Then there exist $U$
    such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$
    and $\indexset[U]= \{\zero, 1\}$
    and $\index[U](\zero) = A$
    and $\index[U](1) = (\carrier[X] \setminus B)$.
    %$U$ is a urysohnchain in $X$.
\end{proposition}
\begin{proof}

    Omitted.

    %   We show that $U$ is a sequence.
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}
%   
    %   We show that $A \subseteq (\carrier[X] \setminus B)$.
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}
%   
    %   We show that $U$ is a chain of subsets.
    %   \begin{subproof}
    %       For all $n \in \indexset[U]$ we have $n = \zero \lor n = 1$.
    %       It suffices to show that for all $n \in \indexset[U]$ we have
    %       for all $m \in \indexset[U]$ such that 
    %       $n < m$ we have $\index[U](n) \subseteq \index[U](m)$.
    %       Fix $n \in \indexset[U]$.
    %       Fix $m \in \indexset[U]$.
    %       \begin{byCase}
    %           \caseOf{$n = 1$.} Trivial.
    %           \caseOf{$n = \zero$.} 
    %               \begin{byCase}
    %                   \caseOf{$m = \zero$.} Trivial.
    %                   \caseOf{$m = 1$.} Omitted.
    %               \end{byCase}
    %       \end{byCase}
    %   \end{subproof}
%   
    %   $A \subseteq X$.
    %   $(X \setminus B) \subseteq X$.
    %   We show that for all $x \in U$ we have $x \subseteq X$.
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}
%   
    %   We show that $\closure{A}{X} \subseteq \interior{(X \setminus B)}{X}$.
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}
    %   We show that for all $n,m \in \indexset[U]$ such that $n < m$ we have
    %   $\closure{\index[U](n)}{X} \subseteq \interior{\index[U](m)}{X}$.
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}

    
\end{proof}

\begin{proposition}\label{urysohnchain_induction_begin_step_two}
    Let $X$ be a urysohn space.
    Suppose $A,B \in \closeds{X}$.
    Suppose $A \inter B$ is empty.
    Suppose there exist $U$
    such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$
    and $\indexset[U]= \{\zero, 1\}$
    and $\index[U](\zero) = A$
    and $\index[U](1) = (\carrier[X] \setminus B)$.
    Then $U$ is a urysohnchain in $X$.
\end{proposition}
\begin{proof}
    Omitted.
\end{proof}



\begin{proposition}\label{t_four_propositon}
    Let $X$ be a urysohn space.
    Then for all $A,B \subseteq X$ such that $\closure{A}{X} \subseteq \interior{B}{X}$
    we have there exists $C \subseteq X$ such that 
    $\closure{A}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{B}{X}$.
\end{proposition}
\begin{proof}
    Omitted.
\end{proof}

\begin{definition}\label{minimum}
    $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
\end{definition}

\begin{definition}\label{maximum}
    $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
\end{definition}

\begin{proposition}\label{urysohnchain_induction_step_existence}
    Let $X$ be a urysohn space.
    Suppose $U$ is a urysohnchain in $X$.
    Then there exist $U'$ such that $U'$ is a refinmant of $U$ and $U'$ is a urysohnchain in $X$.
\end{proposition}
\begin{proof}
    % U  = ( A_{0}, A_{1}, A_{2}, ... , A_{n-1}, A_{n})
    % U' = ( A_{0}, A'_{1}, A_{1}, A'_{2}, A_{2}, ...   A_{n-1}, A'_{n}, A_{n})

    Let $m = \max{\indexset[U]}$.
    For all $n \in (\indexset[U] \setminus \{m\})$ we have there exist $C \subseteq X$ 
    such that $\closure{\index[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\index[U](n+1)}{X}$.
    
    
    %\begin{definition}\label{refinmant}
    %    $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and 
    %    for all $y \in C$ such that $y \subset x$ 
    %    we have there exist $c \in C'$ such that $y \subset c \subset x$
    %    and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$.
    %\end{definition}
    Omitted.

\end{proof}


\begin{proposition}\label{existence_of_staircase_function}
    Let $X$ be a urysohn space.
    Suppose $U$ is a urysohnchain in $X$ and $U$ has cardinality $k$.
    Suppose $k \neq \zero$.
    Then there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ 
    and for all $n \in \indexset[U]$ we have for all $x \in \index[U](n)$ 
    we have $f(x) = \rfrac{n}{k}$.
\end{proposition}
\begin{proof}
    Omitted.
\end{proof}

\begin{abbreviation}\label{refinment_abbreviation}
    $x \refine y$ iff $x$ is a refinmant of $y$.
\end{abbreviation}




\begin{theorem}\label{urysohn}
    Let $X$ be a urysohn space.
    Suppose $A,B \in \closeds{X}$.
    Suppose $A \inter B$ is empty.
    There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ 
    and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.
\end{theorem}
\begin{proof}

    There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$ 
    and $\indexset[\eta] = \{\zero, 1\}$ 
    and $\index[\eta](\zero) = A$
    and $\index[\eta](1) = (\carrier[X] \setminus B)$  by \cref{urysohnchain_induction_begin}.
    
    We show that there exist $\zeta$ such that $\zeta$ is a sequence 
    and $\indexset[\zeta] = \naturals$
    and $\eta \in \carrier[\zeta]$ and $\index[\zeta](\eta) = \zero$
    and for all $n \in \indexset[\zeta]$ we have $n+1 \in \indexset[\zeta]$ 
    and $\index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)$.
    \begin{subproof}
        %Let $P = \{ n \in \naturals \mid \exists \zeta. ((n = \zero \land \index[\zeta](n) = \eta \land \index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)) \lor (n \neq \zero \land \index[\zeta](n)$ is a urysohnchain in $X$ \land $\index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)))\}$.
        %Let $C = \{ x \mid \text{$x$ is a uysohncahin in $X$}\}$.
        Let $\alpha = \{x \in C \mid \exists y \in \alpha. x \refine y \lor x = \eta\}$.
        Let $\beta = \{ (n,x) \mid n \in \naturals \mid \exists m \in \naturals. \exists y \in \alpha. (x \in \alpha) \land ((x \refine y \land m = n+1 )\lor ((n,x) = (\zero,\eta)))\}$.

        % TODO: Proof that \beta is a function which would be used for the indexing.
        
    \end{subproof}




    %Suppose $\eta$ is a urysohnchain in $X$.
    %Suppose $\carrier[\eta] =\{A, (X \setminus B)\}$
    %and $\indexset[\eta] = \{\zero, 1\}$
    %and $\index[\eta](\zero) = A$ 
    %and $\index[\eta](1) = (X \setminus B)$.


    %Then $\eta$ is a urysohnchain in $X$.

    %   Take $P$ such that $P$ is a infinite sequence and $\indexset[P] = \naturals$ and for all $i \in \indexset[P]$ we have $\index[P](i) = \pow{X}$.
    %   
    %   We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence 
    %   and for all $i \in \indexset[\zeta]$ we have 
    %   $\index[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$
    %   and $A \subseteq \index[\zeta](i)$
    %   and $\index[\zeta](i) \subseteq (X \setminus B)$
    %   and for all $j \in \indexset[\zeta]$ such that 
    %   $j < i$ we have for all $x \in \index[\zeta](j)$ we have $x \in \index[\zeta](i)$.
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}
    %   
    %   
    %   
    %   
    %   
    %   
    %   
    %   
    %   We show that there exist $g \in \funs{X}{\intervalclosed{\zero}{1}}$ such that $g(A)=1$ and $g(X\setminus A) = \zero$.
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}
    %   $g$ is a staircase function and $\chain[g] = C$.
    %   $g$ is a legal staircase function.
    %   
    %   
    %   We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$ 
    %   and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}


    %   We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$. 
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}

    %   Proof Sheme Idea:
    %    -We proof for n=1 that C_{n} is a chain and legal
    %    -Then by induction with P(n+1) is refinmant of P(n)
    %    -Therefore we have a increing refinmant of these Chains such that our limit could even apply
    %    ---------------------------------------------------------

    %   We show that there exist $f \in \funs{\naturals}{\funs{X}{\intervalclosed{0}{1}}}$ such that $f(n)$ is a staircase function. %TODO: Define Staircase function
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}


    %    Formalization idea of enumarted sequences:
    %    - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals} 
    %    - This should give all finite and infinte enumarable sequences
    %    - Introduce a notion for the indexing of these enumarable sequences.
    %    - Then we can define the limit of a enumarted sequence of functions.
    %    ---------------------------------------------------------
    %   
    %    Here we need a limit definition for sequences of functions
    %   We show that there exist $F \in \funs{X}{\intervalclosed{0}{1}}$ such that $F = \limit{set of the staircase functions}$
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}
    %   
    %   We show that $F(A) = 1$.
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}
    %   
    %   We show that $F(B) = 0$.
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof} 
    %   
    %   We show that $F$ is continuous.
    %   \begin{subproof}
    %       Omitted.
    %   \end{subproof}
\end{proof}

%\begin{theorem}\label{safe}
%    Contradiction.     
%\end{theorem}