summaryrefslogtreecommitdiff
path: root/library/topology/urysohn.tex
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-08-10 19:18:39 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-08-10 19:18:39 +0200
commit34aad4be8fb8433f0205517732da0d449d077572 (patch)
treeb926d3b4e42f92a89f18210490b8313f8d62e97a /library/topology/urysohn.tex
parent894dd1c6e66099f65ebb8860e0cdf258fa143e89 (diff)
more more urysohn
Diffstat (limited to 'library/topology/urysohn.tex')
-rw-r--r--library/topology/urysohn.tex341
1 files changed, 188 insertions, 153 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index 3152de7..028e10f 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -198,60 +198,82 @@ The first tept will be a formalisation of chain constructions.
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
Suppose $A \inter B$ is empty.
- Suppose $U = \{A,(X \setminus B)\}$.
- Suppose $\indexset[U]= \{\zero, 1\}$.
- Suppose $\index[U](\zero) = A$.
- Suppose $\index[U](1) = (X \setminus B)$.
- Then $U$ is a urysohnchain in $X$.
+ Then there exist $U$
+ such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$
+ and $\indexset[U]= \{\zero, 1\}$
+ and $\index[U](\zero) = A$
+ and $\index[U](1) = (\carrier[X] \setminus B)$.
+ %$U$ is a urysohnchain in $X$.
\end{proposition}
\begin{proof}
- We show that $U$ is a sequence.
- \begin{subproof}
- Omitted.
- \end{subproof}
- We show that $A \subseteq (X \setminus B)$.
- \begin{subproof}
- Omitted.
- \end{subproof}
+ Omitted.
- We show that $U$ is a chain of subsets.
- \begin{subproof}
- For all $n \in \indexset[U]$ we have $n = \zero \lor n = 1$.
- It suffices to show that for all $n \in \indexset[U]$ we have
- for all $m \in \indexset[U]$ such that
- $n < m$ we have $\index[U](n) \subseteq \index[U](m)$.
- Fix $n \in \indexset[U]$.
- Fix $m \in \indexset[U]$.
- \begin{byCase}
- \caseOf{$n = 1$.} Trivial.
- \caseOf{$n = \zero$.}
- \begin{byCase}
- \caseOf{$m = \zero$.} Trivial.
- \caseOf{$m = 1$.} Omitted.
- \end{byCase}
- \end{byCase}
- \end{subproof}
+ % We show that $U$ is a sequence.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+%
+ % We show that $A \subseteq (\carrier[X] \setminus B)$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+%
+ % We show that $U$ is a chain of subsets.
+ % \begin{subproof}
+ % For all $n \in \indexset[U]$ we have $n = \zero \lor n = 1$.
+ % It suffices to show that for all $n \in \indexset[U]$ we have
+ % for all $m \in \indexset[U]$ such that
+ % $n < m$ we have $\index[U](n) \subseteq \index[U](m)$.
+ % Fix $n \in \indexset[U]$.
+ % Fix $m \in \indexset[U]$.
+ % \begin{byCase}
+ % \caseOf{$n = 1$.} Trivial.
+ % \caseOf{$n = \zero$.}
+ % \begin{byCase}
+ % \caseOf{$m = \zero$.} Trivial.
+ % \caseOf{$m = 1$.} Omitted.
+ % \end{byCase}
+ % \end{byCase}
+ % \end{subproof}
+%
+ % $A \subseteq X$.
+ % $(X \setminus B) \subseteq X$.
+ % We show that for all $x \in U$ we have $x \subseteq X$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+%
+ % We show that $\closure{A}{X} \subseteq \interior{(X \setminus B)}{X}$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+ % We show that for all $n,m \in \indexset[U]$ such that $n < m$ we have
+ % $\closure{\index[U](n)}{X} \subseteq \interior{\index[U](m)}{X}$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
- $A \subseteq X$.
- $(X \setminus B) \subseteq X$.
- We show that for all $x \in U$ we have $x \subseteq X$.
- \begin{subproof}
- Omitted.
- \end{subproof}
+
+\end{proof}
- We show that $\closure{A}{X} \subseteq \interior{(X \setminus B)}{X}$.
- \begin{subproof}
- Omitted.
- \end{subproof}
- We show that for all $n,m \in \indexset[U]$ such that $n < m$ we have
- $\closure{\index[U](n)}{X} \subseteq \interior{\index[U](m)}{X}$.
- \begin{subproof}
- Omitted.
- \end{subproof}
+\begin{proposition}\label{urysohnchain_induction_begin_step_two}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \in \closeds{X}$.
+ Suppose $A \inter B$ is empty.
+ Suppose there exist $U$
+ such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$
+ and $\indexset[U]= \{\zero, 1\}$
+ and $\index[U](\zero) = A$
+ and $\index[U](1) = (\carrier[X] \setminus B)$.
+ Then $U$ is a urysohnchain in $X$.
+\end{proposition}
+\begin{proof}
+ Omitted.
\end{proof}
+
\begin{proposition}\label{t_four_propositon}
Let $X$ be a urysohn space.
Then for all $A,B \subseteq X$ such that $\closure{A}{X} \subseteq \interior{B}{X}$
@@ -295,134 +317,147 @@ The first tept will be a formalisation of chain constructions.
\end{proof}
+\begin{proposition}\label{existence_of_staircase_function}
+ Let $X$ be a urysohn space.
+ Suppose $U$ is a urysohnchain in $X$ and $U$ has cardinality $k$.
+ Suppose $k \neq \zero$.
+ Then there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
+ and for all $n \in \indexset[U]$ we have for all $x \in \index[U](n)$
+ we have $f(x) = \rfrac{n}{k}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+\begin{abbreviation}\label{refinment_abbreviation}
+ $x \refine y$ iff $x$ is a refinmant of $y$.
+\end{abbreviation}
-
-
-% The next thing we need to define is the uniform staircase function.
-% This function has it's domain in $X$ and maps to the closed interval $[0,1]$.
-% These functions should behave als follows,
-% \begin{align}
-% &f(A_{0}) = 1 &\text{consant} \\
-% &f(A_{k} \setminus A_{k+1}) = 1-\frac{k}{r} &\text{constant.}
-% \end{align}
-
-% We then prove that for any given $r$ we find a repolished chain,
-% which contains the $A_{i}$ and this replished chain is also legal.
-%
-% The proof will be finished by taking the limit on $f_{n}$ with $f_{n}$
-% be a staircase function with $n$ many refinemants.
-% This limit will be continuous and we would be done.
-
-
-% TODO: Since we want to prove that $f$ is continus, we have to formalize that
-% \reals with the usual topology is a topological space.
-% -------------------------------------------------------------
-
\begin{theorem}\label{urysohn}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
Suppose $A \inter B$ is empty.
- There exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$
+ There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.
\end{theorem}
\begin{proof}
- We show that for all $n \in \naturals$ we have
- if there exist $C$ such that $C$ is a urysohnchain in $X$ of cardinality $n$
- then there exist $C'$ such that $C'$ is a urysohnchain in $X$ of cardinality $n+1$
- and $C'$ is a refinmant of $C$.
- \begin{subproof}
- Omitted.
- \end{subproof}
-
- There exist $\eta$ such that $\eta$ is a urysohnchain in $X$ and $\eta =\{A, (x \setminus B)\}$.
-
-
- Take $P$ such that $P$ is a infinite sequence and $\indexset[P] = \naturals$ and for all $i \in \indexset[P]$ we have $\index[P](i) = \pow{X}$.
+ There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$
+ and $\indexset[\eta] = \{\zero, 1\}$
+ and $\index[\eta](\zero) = A$
+ and $\index[\eta](1) = (\carrier[X] \setminus B)$ by \cref{urysohnchain_induction_begin}.
- We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence
- and for all $i \in \indexset[\zeta]$ we have
- $\index[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$
- and $A \subseteq \index[\zeta](i)$
- and $\index[\zeta](i) \subseteq (X \setminus B)$
- and for all $j \in \indexset[\zeta]$ such that
- $j < i$ we have for all $x \in \index[\zeta](j)$ we have $x \in \index[\zeta](i)$.
+ We show that there exist $\zeta$ such that $\zeta$ is a sequence
+ and $\indexset[\zeta] = \naturals$
+ and $\eta \in \carrier[\zeta]$ and $\index[\zeta](\eta) = \zero$
+ and for all $n \in \indexset[\zeta]$ we have $n+1 \in \indexset[\zeta]$
+ and $\index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)$.
\begin{subproof}
- Omitted.
- \end{subproof}
-
-
-
-
-
-
+ %Let $P = \{ n \in \naturals \mid \exists \zeta. ((n = \zero \land \index[\zeta](n) = \eta \land \index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)) \lor (n \neq \zero \land \index[\zeta](n)$ is a urysohnchain in $X$ \land $\index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)))\}$.
+ %Let $C = \{ x \mid \text{$x$ is a uysohncahin in $X$}\}$.
+ Let $\alpha = \{x \in C \mid \exists y \in \alpha. x \refine y \lor x = \eta\}$.
+ Let $\beta = \{ (n,x) \mid n \in \naturals \mid \exists m \in \naturals. \exists y \in \alpha. (x \in \alpha) \land ((x \refine y \land m = n+1 )\lor ((n,x) = (\zero,\eta)))\}$.
-
- We show that there exist $g \in \funs{X}{\intervalclosed{\zero}{1}}$ such that $g(A)=1$ and $g(X\setminus A) = \zero$.
- \begin{subproof}
- Omitted.
+ % TODO: Proof that \beta is a function which would be used for the indexing.
+
\end{subproof}
- $g$ is a staircase function and $\chain[g] = C$.
- $g$ is a legal staircase function.
- We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$
- and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.
- \begin{subproof}
- Omitted.
- \end{subproof}
- %We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$.
- %\begin{subproof}
- % Omitted.
- %\end{subproof}
-
- %Proof Sheme Idea:
- % -We proof for n=1 that C_{n} is a chain and legal
- % -Then by induction with P(n+1) is refinmant of P(n)
- % -Therefore we have a increing refinmant of these Chains such that our limit could even apply
- % ---------------------------------------------------------
-
- %We show that there exist $f \in \funs{\naturals}{\funs{X}{\intervalclosed{0}{1}}}$ such that $f(n)$ is a staircase function. %TODO: Define Staircase function
- %\begin{subproof}
- % Omitted.
- %\end{subproof}
-
-
- % Formalization idea of enumarted sequences:
- % - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals}
- % - This should give all finite and infinte enumarable sequences
- % - Introduce a notion for the indexing of these enumarable sequences.
- % - Then we can define the limit of a enumarted sequence of functions.
- % ---------------------------------------------------------
- %
- % Here we need a limit definition for sequences of functions
- %We show that there exist $F \in \funs{X}{\intervalclosed{0}{1}}$ such that $F = \limit{set of the staircase functions}$
- %\begin{subproof}
- % Omitted.
- %\end{subproof}
- %
- %We show that $F(A) = 1$.
- %\begin{subproof}
- % Omitted.
- %\end{subproof}
- %
- %We show that $F(B) = 0$.
- %\begin{subproof}
- % Omitted.
- %\end{subproof}
- %
- %We show that $F$ is continuous.
- %\begin{subproof}
- % Omitted.
- %\end{subproof}
+ %Suppose $\eta$ is a urysohnchain in $X$.
+ %Suppose $\carrier[\eta] =\{A, (X \setminus B)\}$
+ %and $\indexset[\eta] = \{\zero, 1\}$
+ %and $\index[\eta](\zero) = A$
+ %and $\index[\eta](1) = (X \setminus B)$.
+
+
+ %Then $\eta$ is a urysohnchain in $X$.
+
+ % Take $P$ such that $P$ is a infinite sequence and $\indexset[P] = \naturals$ and for all $i \in \indexset[P]$ we have $\index[P](i) = \pow{X}$.
+ %
+ % We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence
+ % and for all $i \in \indexset[\zeta]$ we have
+ % $\index[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$
+ % and $A \subseteq \index[\zeta](i)$
+ % and $\index[\zeta](i) \subseteq (X \setminus B)$
+ % and for all $j \in \indexset[\zeta]$ such that
+ % $j < i$ we have for all $x \in \index[\zeta](j)$ we have $x \in \index[\zeta](i)$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+ %
+ %
+ %
+ %
+ %
+ %
+ %
+ %
+ % We show that there exist $g \in \funs{X}{\intervalclosed{\zero}{1}}$ such that $g(A)=1$ and $g(X\setminus A) = \zero$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+ % $g$ is a staircase function and $\chain[g] = C$.
+ % $g$ is a legal staircase function.
+ %
+ %
+ % We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$
+ % and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+
+
+ % We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+
+ % Proof Sheme Idea:
+ % -We proof for n=1 that C_{n} is a chain and legal
+ % -Then by induction with P(n+1) is refinmant of P(n)
+ % -Therefore we have a increing refinmant of these Chains such that our limit could even apply
+ % ---------------------------------------------------------
+
+ % We show that there exist $f \in \funs{\naturals}{\funs{X}{\intervalclosed{0}{1}}}$ such that $f(n)$ is a staircase function. %TODO: Define Staircase function
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+
+
+ % Formalization idea of enumarted sequences:
+ % - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals}
+ % - This should give all finite and infinte enumarable sequences
+ % - Introduce a notion for the indexing of these enumarable sequences.
+ % - Then we can define the limit of a enumarted sequence of functions.
+ % ---------------------------------------------------------
+ %
+ % Here we need a limit definition for sequences of functions
+ % We show that there exist $F \in \funs{X}{\intervalclosed{0}{1}}$ such that $F = \limit{set of the staircase functions}$
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+ %
+ % We show that $F(A) = 1$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+ %
+ % We show that $F(B) = 0$.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
+ %
+ % We show that $F$ is continuous.
+ % \begin{subproof}
+ % Omitted.
+ % \end{subproof}
\end{proof}
-\begin{theorem}\label{safe}
- Contradiction.
-\end{theorem}
+%\begin{theorem}\label{safe}
+% Contradiction.
+%\end{theorem}