diff options
| author | adelon <22380201+adelon@users.noreply.github.com> | 2024-05-21 16:52:01 +0200 |
|---|---|---|
| committer | adelon <22380201+adelon@users.noreply.github.com> | 2024-05-21 16:52:01 +0200 |
| commit | 3845ab9020b3eb591ef999827503b483eb735bd7 (patch) | |
| tree | 492fa80da5901a02c30b3b4d6642890af3ed4ebd /library | |
| parent | 59cec853a697a4dd793c216c9bd603bd775d6da2 (diff) | |
Add simple lemmas on filters
Diffstat (limited to 'library')
| -rw-r--r-- | library/set.tex | 10 | ||||
| -rw-r--r-- | library/set/filter.tex | 29 |
2 files changed, 29 insertions, 10 deletions
diff --git a/library/set.tex b/library/set.tex index 33e5af4..e7e062f 100644 --- a/library/set.tex +++ b/library/set.tex @@ -553,13 +553,15 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio Follows by set extensionality. \end{proof} -\begin{proposition}% -\label{inter_subseteq} +\begin{proposition}\label{inter_subseteq_left} $A\inter B\subseteq A$. \end{proposition} -\begin{proposition}% -\label{inter_emptyset} +\begin{proposition}\label{inter_subseteq_right} + $A\inter B\subseteq B$. +\end{proposition} + +\begin{proposition}\label{inter_emptyset} $A\inter\emptyset = \emptyset$. \end{proposition} \begin{proof} diff --git a/library/set/filter.tex b/library/set/filter.tex index 2797d86..93309de 100644 --- a/library/set/filter.tex +++ b/library/set/filter.tex @@ -3,6 +3,8 @@ \section{Filters} +\subsection{Definition and basic properties of filters} + \begin{abbreviation}\label{upwardclosed} $F$ is upward-closed in $S$ iff for all $A, B$ such that $A\subseteq B\subseteq S$ and $A\in F$ we have $B\in F$. @@ -11,22 +13,37 @@ \begin{definition}\label{filter} $F$ is a filter on $S$ iff $F$ is a family of subsets of $S$ - and $S$ is inhabited and $S\in F$ and $\emptyset\notin F$ and $F$ is closed under binary intersections and $F$ is upward-closed in $S$. \end{definition} +\begin{proposition}\label{filter_ext_complement} + Let $F, G$ be filters on $S$. + Suppose for all $A\subseteq S$ we have $S\setminus A\in F$ iff $S\setminus A\in G$. + Then $F = G$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{filter_inter_in_iff} + Let $F$ be a filter on $S$. + Suppose $A, B\subseteq S$. + Then $A\inter B\in F$ iff $A, B\in F$. +\end{proposition} +\begin{proof} + We have $A\inter B\subseteq A, B$. + Follows by \cref{filter}. +\end{proof} + +\subsection{Principal filters over a set} + \begin{definition}\label{principalfilter} $\principalfilter{S}{A} = \{X\in\pow{S}\mid A\subseteq X\}$. \end{definition} -%\begin{proposition}\label{principalfilter_domain_inhabited} -% Suppose $F$ is a filter on $S$. -% Then $S$ is inhabited. -%\end{proposition} - \begin{proposition}\label{principalfilter_is_filter} Suppose $A\subseteq S$. Suppose $A$ is inhabited. |
