summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/set.tex10
-rw-r--r--library/set/filter.tex29
2 files changed, 29 insertions, 10 deletions
diff --git a/library/set.tex b/library/set.tex
index 33e5af4..e7e062f 100644
--- a/library/set.tex
+++ b/library/set.tex
@@ -553,13 +553,15 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
Follows by set extensionality.
\end{proof}
-\begin{proposition}%
-\label{inter_subseteq}
+\begin{proposition}\label{inter_subseteq_left}
$A\inter B\subseteq A$.
\end{proposition}
-\begin{proposition}%
-\label{inter_emptyset}
+\begin{proposition}\label{inter_subseteq_right}
+ $A\inter B\subseteq B$.
+\end{proposition}
+
+\begin{proposition}\label{inter_emptyset}
$A\inter\emptyset = \emptyset$.
\end{proposition}
\begin{proof}
diff --git a/library/set/filter.tex b/library/set/filter.tex
index 2797d86..93309de 100644
--- a/library/set/filter.tex
+++ b/library/set/filter.tex
@@ -3,6 +3,8 @@
\section{Filters}
+\subsection{Definition and basic properties of filters}
+
\begin{abbreviation}\label{upwardclosed}
$F$ is upward-closed in $S$ iff
for all $A, B$ such that $A\subseteq B\subseteq S$ and $A\in F$ we have $B\in F$.
@@ -11,22 +13,37 @@
\begin{definition}\label{filter}
$F$ is a filter on $S$ iff
$F$ is a family of subsets of $S$
- and $S$ is inhabited
and $S\in F$
and $\emptyset\notin F$
and $F$ is closed under binary intersections
and $F$ is upward-closed in $S$.
\end{definition}
+\begin{proposition}\label{filter_ext_complement}
+ Let $F, G$ be filters on $S$.
+ Suppose for all $A\subseteq S$ we have $S\setminus A\in F$ iff $S\setminus A\in G$.
+ Then $F = G$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{filter_inter_in_iff}
+ Let $F$ be a filter on $S$.
+ Suppose $A, B\subseteq S$.
+ Then $A\inter B\in F$ iff $A, B\in F$.
+\end{proposition}
+\begin{proof}
+ We have $A\inter B\subseteq A, B$.
+ Follows by \cref{filter}.
+\end{proof}
+
+\subsection{Principal filters over a set}
+
\begin{definition}\label{principalfilter}
$\principalfilter{S}{A} = \{X\in\pow{S}\mid A\subseteq X\}$.
\end{definition}
-%\begin{proposition}\label{principalfilter_domain_inhabited}
-% Suppose $F$ is a filter on $S$.
-% Then $S$ is inhabited.
-%\end{proposition}
-
\begin{proposition}\label{principalfilter_is_filter}
Suppose $A\subseteq S$.
Suppose $A$ is inhabited.