diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-06-04 15:29:13 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-06-04 15:29:13 +0200 |
| commit | 3d6ce5e9d5e63a5e5ed833516c62ad056e506775 (patch) | |
| tree | 42db98a592a88080aa6b23e26b429553c39904a6 /library | |
| parent | 050b56baf7a158bff0eb721e03263b121bdc23c3 (diff) | |
Proof of teeone_implies_singletons_closed
The Assumption was changed, for usage of bounded variables. Maybe there is a bug with Omitted. Omitted restricts the Ambigus Phrase testing.
Diffstat (limited to 'library')
| -rw-r--r-- | library/topology/separation.tex | 33 |
1 files changed, 31 insertions, 2 deletions
diff --git a/library/topology/separation.tex b/library/topology/separation.tex index f70cb50..f055495 100644 --- a/library/topology/separation.tex +++ b/library/topology/separation.tex @@ -73,10 +73,39 @@ \begin{proposition}\label{teeone_implies_singletons_closed} Let $X$ be a \teeone-space. - Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$. + Assume $x \in \carrier[X]$. + Then $\{x\}$ is closed in $X$. + %Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$. Ambigus Phrase. if Omitted is ereased. \end{proposition} \begin{proof} - Omitted. + %Omitted. + %Fix $x \in X$. + Let $V = \{ U \in \opens[X] \mid x \notin U\}$. + For all $y \in \carrier[X]$ such that $x \neq y$ there exist $U \in \opens[X]$ such that $x \notin U \ni y$. + For all $y \in \carrier[X]$ such that $y \neq x$ there exists $U \in V$ such that $y \in U$. + + $\unions{V} \in \opens[X]$. + For all $y \in \carrier[X]$ such that $x \neq y$ we have $y \in \unions{V}$. + We show that $\carrier[X] \setminus \{x\} = \unions{V}$. + \begin{subproof} + We show that for all $y \in \carrier[X] \setminus \{x\}$ we have $y \in \unions{V}$. + \begin{subproof} + Fix $y \in \carrier[X] \setminus \{x\}$. + $y \neq x$. + $y \in \carrier[X]$. + $y \in \unions{V}$. + \end{subproof} + For all $y \in \unions{V}$ we have $y \notin \{x\}$. + For all $y \in \unions{V}$ we have $y \in \carrier[X] \setminus \{x\}$. + Follows by set extensionality. + \end{subproof} + + + + + % Let $U_{y} \in \opens[X]$ such that $x \neq y \in X$. Error: unexpected '{' expecting digit + %For all $y$ there exists $U$ such that $x \neq y$ and $y \in U$ and $U \in \opens[X]$. + % TODO % Choose for every y distinct from x and open subset U_y containing y but not x. % The union U of all the U_y is open. |
