diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-06-25 00:00:38 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-06-25 00:00:38 +0200 |
| commit | 9a89974f293aa53451cad42f07e54e5bca14af4f (patch) | |
| tree | b96c0ec2c21051a31988b170cceffc01614d5195 /library | |
| parent | 28cbe434d393066f6b4525c67bd01b1396e97381 (diff) | |
definition of equivalence_from_partition can proof false in everything.tex
Diffstat (limited to 'library')
| -rw-r--r-- | library/everything.tex | 7 | ||||
| -rw-r--r-- | library/relation/equivalence.tex | 101 |
2 files changed, 57 insertions, 51 deletions
diff --git a/library/everything.tex b/library/everything.tex index 61bccb2..783679f 100644 --- a/library/everything.tex +++ b/library/everything.tex @@ -16,12 +16,13 @@ \import{relation/uniqueness.tex} \import{function.tex} \import{ordinal.tex} -%\import{nat.tex} +\import{nat.tex} \import{cardinal.tex} \import{algebra/magma.tex} \import{algebra/semigroup.tex} \import{algebra/monoid.tex} \import{algebra/group.tex} + \import{order/order.tex} %\import{order/semilattice.tex} \import{topology/topological-space.tex} @@ -33,3 +34,7 @@ \begin{proposition}\label{trivial} $x = x$. \end{proposition} + +%\begin{proposition}\label{safe} +% Contradiction. +%\end{proposition} diff --git a/library/relation/equivalence.tex b/library/relation/equivalence.tex index bda8486..87f70af 100644 --- a/library/relation/equivalence.tex +++ b/library/relation/equivalence.tex @@ -219,53 +219,54 @@ \end{proof} - -\begin{definition}\label{equivalence_from_partition} - $\equivfrompartition{P} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$. -\end{definition} - -\begin{proposition}\label{equivalence_from_partition_intro} - Let $P$ be a partition of $A$. - Let $a,b\in A$. - Suppose $a,b\in C\in P$. - Then $a\mathrel{\equivfrompartition{P}} b$. -\end{proposition} - -\begin{proposition}\label{equivalence_from_partition_reflexive} - Let $P$ be a partition of $A$. - $\equivfrompartition{P}$ is reflexive on $A$. -\end{proposition} - -\begin{proposition}\label{equivalence_from_partition_symmetric} - Let $P$ be a partition. - $\equivfrompartition{P}$ is symmetric. -\end{proposition} -\begin{proof} - Follows by \cref{symmetric,equivalence_from_partition,notin_emptyset}. -\end{proof} - -\begin{proposition}\label{equivalence_from_partition_transitive} - Let $P$ be a partition. - $\equivfrompartition{P}$ is transitive. -\end{proposition} - -\begin{proposition}\label{equivalence_from_partition_is_equivalence} - Let $P$ be a partition of $A$. - $\equivfrompartition{P}$ is an equivalence on $A$. -\end{proposition} - -\begin{proposition}\label{equivalence_from_quotient} - Let $E$ be an equivalence on $A$. - Then $\equivfrompartition{\quotient{A}{E}} = E$. -\end{proposition} -\begin{proof} - Follows by set extensionality. -\end{proof} - -\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition} - Let $P$ be a partition of $A$. - Then $\quotient{A}{\equivfrompartition{P}} = P$. -\end{proposition} -\begin{proof} - Follows by set extensionality. -\end{proof} +% +%\begin{definition}\label{equivalence_from_partition} +% $\equivfrompartition{P} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$. +%\end{definition} +% +%\begin{proposition}\label{equivalence_from_partition_intro} +% Let $P$ be a partition of $A$. +% Let $a,b\in A$. +% Suppose $a,b\in C\in P$. +% Then $a\mathrel{\equivfrompartition{P}} b$. +%\end{proposition} +% +%\begin{proposition}\label{equivalence_from_partition_reflexive} +% Let $P$ be a partition of $A$. +% $\equivfrompartition{P}$ is reflexive on $A$. +%\end{proposition} +% +%\begin{proposition}\label{equivalence_from_partition_symmetric} +% Let $P$ be a partition. +% $\equivfrompartition{P}$ is symmetric. +%\end{proposition} +%\begin{proof} +% Follows by \cref{symmetric,equivalence_from_partition,notin_emptyset}. +%\end{proof} +% +%\begin{proposition}\label{equivalence_from_partition_transitive} +% Let $P$ be a partition. +% $\equivfrompartition{P}$ is transitive. +%\end{proposition} +% +%\begin{proposition}\label{equivalence_from_partition_is_equivalence} +% Let $P$ be a partition of $A$. +% $\equivfrompartition{P}$ is an equivalence on $A$. +%\end{proposition} +% +%\begin{proposition}\label{equivalence_from_quotient} +% Let $E$ be an equivalence on $A$. +% Then $\equivfrompartition{\quotient{A}{E}} = E$. +%\end{proposition} +%\begin{proof} +% Follows by set extensionality. +%\end{proof} +% +%\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition} +% Let $P$ be a partition of $A$. +% Then $\quotient{A}{\equivfrompartition{P}} = P$. +%\end{proposition} +%\begin{proof} +% Follows by set extensionality. +%\end{proof} +%
\ No newline at end of file |
