summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-06-20 13:01:57 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-06-20 13:01:57 +0200
commit28cbe434d393066f6b4525c67bd01b1396e97381 (patch)
treea4cb65b356e947b1769d7b6e20553d95ae9ccc0e /library
parent6839f79e775d8ffa36d421f4e3c08528323eaf17 (diff)
[Stable] Topologgical-space.tex
Diffstat (limited to 'library')
-rw-r--r--library/topology/topological-space.tex40
1 files changed, 25 insertions, 15 deletions
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex
index 73b7ec5..8da29d3 100644
--- a/library/topology/topological-space.tex
+++ b/library/topology/topological-space.tex
@@ -382,7 +382,9 @@
Let $F'' = F \setminus \{U\}$.
There exist $U' \in F'$ such that $U' = \carrier[X] \setminus U$.
\caseOf{$\inters{F} \neq \emptyset$.}
+
Fix $a \in \carrier[X] \setminus (\unions{F'})$.
+ $\inters{F}$ is inhabited.
$a \in \carrier[X]$.
$a \notin \unions{F'}$.
For all $A \in F'$ we have $a \notin A$.
@@ -390,7 +392,6 @@
For all $A \in F'$ there exists $Y \in F$ such that $Y = (\carrier[X] \setminus A)$.
For all $Y \in F $ there exists $A \in F'$ such that $a \in Y = (\carrier[X] \setminus A)$.
For all $Y \in F$ we have $a \in Y$.
- $\inters{F}$ is inhabited.
Therefore $a \in \inters{F}$.
\end{byCase}
\end{subproof}
@@ -427,26 +428,35 @@
Follows by \cref{closure,closeds,inters_subseteq_elem,closures}.
\end{proof}
+\begin{proposition}\label{interior_is_maximal}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ For all $Y \in \opens[X]$ such that $Y \subseteq A$ we have $Y \subseteq \interior{A}{X}$.
+\end{proposition}
+
\begin{proposition}\label{complement_interior_eq_closure_complement}
Let $X$ be a topological space.
Suppose $A \subseteq \carrier[X]$.
$\carrier[X]\setminus\interior{A}{X} = \closure{(\carrier[X]\setminus A)}{X}$.
\end{proposition}
\begin{proof}
- We show that for all $x \in \carrier[X]\setminus\interior{A}{X}$ we have $x \in \closure{(\carrier[X]\setminus A)}{X}$.
- \begin{subproof}
- Fix $x \in \carrier[X]\setminus\interior{A}{X}$.
- Suppose not.
- $x \notin \closure{(\carrier[X]\setminus A)}{X}$.
- $x \in \carrier[X]$.
- $(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \inter \closure{(\carrier[X]\setminus A)}{X} = \emptyset$.
- $x \in A$.
- $x \in A \inter (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$.
- $\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X} \in \opens[X]$.
- Contradiction.
- \end{subproof}
- $\carrier[X]\setminus\interior{A}{X} \subseteq \closure{(\carrier[X]\setminus A)}{X}$.
- $\closure{(\carrier[X]\setminus A)}{X} \subseteq \carrier[X]\setminus\interior{A}{X}$.
+ We show that for all $x \in \carrier[X]\setminus\interior{A}{X}$ we have $x \in \closure{(\carrier[X]\setminus A)}{X}$.
+ \begin{subproof}
+
+ Fix $x \in \carrier[X]\setminus\interior{A}{X}$.
+ Suppose not.
+ $x \notin \closure{(\carrier[X]\setminus A)}{X}$.
+ $x \in \carrier[X]$.
+ $(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \inter \closure{(\carrier[X]\setminus A)}{X} = \emptyset$.
+ $x \in A$.
+ $x \in A \inter (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$.
+ $\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X} \in \opens[X]$.
+ There exist $U \in \opens[X]$ such that $x \in U$ and $U\subseteq A$.
+ $U \subseteq \interior{A}{X}$.
+ Contradiction.
+ \end{subproof}
+ $\carrier[X]\setminus\interior{A}{X} \subseteq \closure{(\carrier[X]\setminus A)}{X}$.
+ $\closure{(\carrier[X]\setminus A)}{X} \subseteq \carrier[X]\setminus\interior{A}{X}$.
\end{proof}