summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/topology/urysohn.tex151
1 files changed, 101 insertions, 50 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index 79d65dc..e1fa924 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -231,6 +231,51 @@ The first tept will be a formalisation of chain constructions.
$\pot(n) = \apply{\pot}{n}$.
\end{abbreviation}
+%Take all points, besids one but then take all open sets not containing x but all other, so \{x\} has to be closed
+\begin{axiom}\label{hausdorff_implies_singltons_closed}
+ For all $X$ such that $X$ is Hausdorff we have
+ for all $x \in \carrier[X]$ we have $\{x\}$ is closed in $X$.
+\end{axiom}
+
+\begin{lemma}\label{urysohn_set_in_between}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \in \closeds{X}$.
+ Suppose $A \subset B$.
+ %Suppose $B \union A \neq \carrier[X]$.
+ There exist $C \in \closeds{X}$
+ such that $A \subset C \subset B$ or $A, B \in \opens[X]$.
+\end{lemma}
+\begin{proof}
+ We have $B \setminus A$ is inhabited.
+ Take $x$ such that $x \in (B \setminus A)$.
+ Then $A \subset (A \union \{x\})$.
+ Let $C = \closure{A \union \{x\}}{X}$.
+ We have $(A \union \{x\}) \subseteq \closure{A \union \{x\}}{X}$.
+ Therefore $A \subset C$.
+ $A \subseteq B \subseteq \carrier[X]$.
+ $x \in B$.
+ Therefore $x \in \carrier[X]$.
+ $(A \union \{x\}) \subseteq \carrier[X]$.
+ We have $\closure{A \union \{x\}}{X}$ is closed in $X$ by \cref{closure_is_closed}.
+ Therefore $C$ is closed in $X$ by \cref{closure_is_closed}.
+ \begin{byCase}
+ \caseOf{$C = B$.}
+ %We have $\carrier[X] \setminus A$ is open in $X$.
+ %We have $\carrier[X] \setminus B$ is open in $X$.
+ %$\{x\}$ is closed in $X$.% by \cref{hausdorff_implies_singltons_closed}.
+ %$A \union \{x\} = C$.
+ %$\carrier[X] \setminus (A \union \{x\}) = (\carrier[X] \setminus C)$.
+ %$\carrier[X] \setminus (A) = \{x\} \union (\carrier[X] \setminus C)$.
+
+
+ %Therefore $\{x\}$ is open in $X$.
+ Omitted.
+ \caseOf{$C \neq B$.}
+ Omitted.
+ \end{byCase}
+
+\end{proof}
+
\begin{proposition}\label{urysohnchain_induction_begin}
Let $X$ be a urysohn space.
@@ -600,15 +645,16 @@ The first tept will be a formalisation of chain constructions.
we have $f(x) = \rfrac{n}{\pot(m)}$.
\begin{subproof}
Fix $m \in \indexset[\zeta]$.
- $\index[\zeta](m)$ is a urysohnchain in $X$.
- Define $o : \alpha \to \intervalclosed{\zero}{1}$ such that $o(x) =$
- \begin{cases}
- & 0 & \text{if} x \in A
- & 1 & \text{if} x \in B
- & \rfrac{n}{m} & \text{if} \exists n \in \naturals. x \in \index[\index[\zeta](m)](n) \land x \notin \index[\index[\zeta](m)](n-1)
- \end{cases}
-
-
+ %$\index[\zeta](m)$ is a urysohnchain in $X$.
+
+ %Define $o : \alpha \to \intervalclosed{\zero}{1}$ such that $o(x) =$
+ %\begin{cases}
+ % & 0 & \text{if} x \in A
+ % & 1 & \text{if} x \in B
+ % & \rfrac{n}{m} & \text{if} \exists n \in \naturals. x \in \index[\index[\zeta](m)](n) \land x \notin \index[\index[\zeta](m)](n-1)
+ %\end{cases}
+%
+ Omitted.
\end{subproof}
@@ -677,6 +723,7 @@ The first tept will be a formalisation of chain constructions.
\begin{subproof}
Fix $n \in \naturals$.
Fix $x \in \carrier[X]$.
+ Omitted.
\end{subproof}
@@ -696,11 +743,12 @@ The first tept will be a formalisation of chain constructions.
\begin{subproof}
Fix $x \in \carrier[X]$.
-
+ Omitted.
% Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
%Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
\end{subproof}
+ Omitted.
\end{subproof}
@@ -709,51 +757,54 @@ The first tept will be a formalisation of chain constructions.
We show that for all $x \in \dom{G}$ we have $G(x) \in \reals$.
\begin{subproof}
- Fix $x \in \dom{G}$.
- It suffices to show that $g(x) \in \reals$.
-
- There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
-
- We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$.
- \begin{subproof}
- Fix $\epsilon \in \reals$.
-
-
- \end{subproof}
- Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}.
+ %Fix $x \in \dom{G}$.
+ %It suffices to show that $g(x) \in \reals$.
+%
+ %There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
+%
+ %We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$.
+ %\begin{subproof}
+ % Fix $\epsilon \in \reals$.
+ %
+%
+ %\end{subproof}
+ %Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}.
+ Omitted.
\end{subproof}
We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$.
\begin{subproof}
- Fix $x \in \dom{G}$.
- Then $x \in \carrier[X]$.
- \begin{byCase}
- \caseOf{$x \in A$.}
- For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$.
-
-
- \caseOf{$x \notin A$.}
- \begin{byCase}
- \caseOf{$x \in B$.}
- For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$.
-
- \caseOf{$x \notin B$.}
- Omitted.
- \end{byCase}
- \end{byCase}
+ %Fix $x \in \dom{G}$.
+ %Then $x \in \carrier[X]$.
+ %\begin{byCase}
+ % \caseOf{$x \in A$.}
+ % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$.
+%
+%
+ % \caseOf{$x \notin A$.}
+ % \begin{byCase}
+ % \caseOf{$x \in B$.}
+ % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$.
+%
+ % \caseOf{$x \notin B$.}
+ % Omitted.
+ % \end{byCase}
+ %\end{byCase}
+ Omitted.
\end{subproof}
We show that $G \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$.
\begin{subproof}
- It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}.
- It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$.
- Fix $x \in \dom{G}$.
- Then $x \in \carrier[X]$.
- $g(x) = G(x)$.
- We have $G(x) \in \reals$.
- $\zero \leq G(x) \leq 1$.
- We have $G(x) \in \intervalclosed{\zero}{1}$ .
+ %It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}.
+ %It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$.
+ %Fix $x \in \dom{G}$.
+ %Then $x \in \carrier[X]$.
+ %$g(x) = G(x)$.
+ %We have $G(x) \in \reals$.
+ %$\zero \leq G(x) \leq 1$.
+ %We have $G(x) \in \intervalclosed{\zero}{1}$ .
+ Omitted.
\end{subproof}
We show that $G(A) = \zero$.
@@ -860,7 +911,7 @@ The first tept will be a formalisation of chain constructions.
% Omitted.
% \end{subproof}
\end{proof}
-
-\begin{theorem}\label{safe}
- Contradiction.
-\end{theorem}
+%
+%\begin{theorem}\label{safe}
+% Contradiction.
+%\end{theorem}